超声波预处理与超临界二氧化碳萃取相结合的木贼叶提取物

IF 3.4 3区 工程技术 Q2 CHEMISTRY, PHYSICAL Journal of Supercritical Fluids Pub Date : 2024-08-07 DOI:10.1016/j.supflu.2024.106372
Thaíris Karoline Silva Laurintino , Thuany Naiara Silva Laurintino , Deise Parolo Tramontin , Alexandre Bella Cruz , Debora Wainstein Paiva , Ariovaldo Bolzan , Marintho Bastos Quadri
{"title":"超声波预处理与超临界二氧化碳萃取相结合的木贼叶提取物","authors":"Thaíris Karoline Silva Laurintino ,&nbsp;Thuany Naiara Silva Laurintino ,&nbsp;Deise Parolo Tramontin ,&nbsp;Alexandre Bella Cruz ,&nbsp;Debora Wainstein Paiva ,&nbsp;Ariovaldo Bolzan ,&nbsp;Marintho Bastos Quadri","doi":"10.1016/j.supflu.2024.106372","DOIUrl":null,"url":null,"abstract":"<div><p>This work aimed to obtain extracts from <em>Costus spicatus</em> leaves through ultrasonic pretreatment in supercritical CO<sub>2</sub> extraction (UAE+SFE). A central composite design was used to evaluate the influence of temperature (36–64 °C), pressure (8–20 MPa), and cosolvent (0–20 %w) in terms of overall yield and chemical composition. Morphology using scanning electron micrograph (SEM), total phenolic content, content of total flavonoid, antioxidant (DPPH and ABTS), and antibacterial activities were evaluated. UAE+SFE showed a more notable overall yield, with 6.97 %. In the SEM, the sample treated with UAE+SFE significantly impacted tissue structures, improving the selectivity of SFE regarding linolenic acid, leading to a maximum composition value of 62.5 % area according to GC-MS. Furthermore, the UAE+SFE extract exhibited strong antimicrobial activity compared to the extract obtained by the SFE technique. Based on the pioneering results, the bioactives obtained are promising and interesting for application in the cosmetic, pharmaceutical, and food industries.</p></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"213 ","pages":"Article 106372"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound pretreatment combined with supercritical CO2 extraction of Costus spicatus leaf extract\",\"authors\":\"Thaíris Karoline Silva Laurintino ,&nbsp;Thuany Naiara Silva Laurintino ,&nbsp;Deise Parolo Tramontin ,&nbsp;Alexandre Bella Cruz ,&nbsp;Debora Wainstein Paiva ,&nbsp;Ariovaldo Bolzan ,&nbsp;Marintho Bastos Quadri\",\"doi\":\"10.1016/j.supflu.2024.106372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work aimed to obtain extracts from <em>Costus spicatus</em> leaves through ultrasonic pretreatment in supercritical CO<sub>2</sub> extraction (UAE+SFE). A central composite design was used to evaluate the influence of temperature (36–64 °C), pressure (8–20 MPa), and cosolvent (0–20 %w) in terms of overall yield and chemical composition. Morphology using scanning electron micrograph (SEM), total phenolic content, content of total flavonoid, antioxidant (DPPH and ABTS), and antibacterial activities were evaluated. UAE+SFE showed a more notable overall yield, with 6.97 %. In the SEM, the sample treated with UAE+SFE significantly impacted tissue structures, improving the selectivity of SFE regarding linolenic acid, leading to a maximum composition value of 62.5 % area according to GC-MS. Furthermore, the UAE+SFE extract exhibited strong antimicrobial activity compared to the extract obtained by the SFE technique. Based on the pioneering results, the bioactives obtained are promising and interesting for application in the cosmetic, pharmaceutical, and food industries.</p></div>\",\"PeriodicalId\":17078,\"journal\":{\"name\":\"Journal of Supercritical Fluids\",\"volume\":\"213 \",\"pages\":\"Article 106372\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Supercritical Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896844624002079\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002079","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过超临界二氧化碳萃取(UAE+SFE)中的超声波预处理从树叶中获得提取物。采用中心复合设计评估了温度(36-64 °C)、压力(8-20 MPa)和助溶剂(0-20 %w)对总收率和化学成分的影响。使用扫描电子显微镜(SEM)对其形态、总酚含量、总黄酮含量、抗氧化性(DPPH 和 ABTS)和抗菌活性进行了评估。UAE+SFE 的总收率较高,为 6.97%。在扫描电子显微镜下,用 UAE+SFE 处理过的样品对组织结构产生了显著影响,提高了 SFE 对亚麻酸的选择性,从而使 GC-MS 显示的最大成分值达到 62.5 %。此外,与通过 SFE 技术获得的提取物相比,UAE+SFE 提取物具有很强的抗菌活性。基于这些开创性的结果,所获得的生物活性物质有望在化妆品、制药和食品行业中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrasound pretreatment combined with supercritical CO2 extraction of Costus spicatus leaf extract

This work aimed to obtain extracts from Costus spicatus leaves through ultrasonic pretreatment in supercritical CO2 extraction (UAE+SFE). A central composite design was used to evaluate the influence of temperature (36–64 °C), pressure (8–20 MPa), and cosolvent (0–20 %w) in terms of overall yield and chemical composition. Morphology using scanning electron micrograph (SEM), total phenolic content, content of total flavonoid, antioxidant (DPPH and ABTS), and antibacterial activities were evaluated. UAE+SFE showed a more notable overall yield, with 6.97 %. In the SEM, the sample treated with UAE+SFE significantly impacted tissue structures, improving the selectivity of SFE regarding linolenic acid, leading to a maximum composition value of 62.5 % area according to GC-MS. Furthermore, the UAE+SFE extract exhibited strong antimicrobial activity compared to the extract obtained by the SFE technique. Based on the pioneering results, the bioactives obtained are promising and interesting for application in the cosmetic, pharmaceutical, and food industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Supercritical Fluids
Journal of Supercritical Fluids 工程技术-工程:化工
CiteScore
7.60
自引率
10.30%
发文量
236
审稿时长
56 days
期刊介绍: The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics. Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.
期刊最新文献
Flow mechanism and back gap windage loss of a sCO2 radial inflow turbine with impeller scallops Supercritical CO2 assisted bioMOF drug encapsulation and functionalization for delivery with a synergetic therapeutic value Supercritical CO2 green solvent extraction of Nepeta crispa: Evaluation of process optimization, chemical analysis, and biological activity IFC Contents continued
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1