Deshi Kong , Guangfeng Shi , Siwei Meng , Ziwei Jiang , Chunyang Zou
{"title":"原位激光辅助车削 WC-Co 的损伤机理和表面质量优化实验研究","authors":"Deshi Kong , Guangfeng Shi , Siwei Meng , Ziwei Jiang , Chunyang Zou","doi":"10.1016/j.ijrmhm.2024.106842","DOIUrl":null,"url":null,"abstract":"<div><p>Tungsten carbide (WC-Co) is a material that is frequently employed in the field of optical mold forming. However, the high hardness of WC-Co presents a challenge in machining. In-situ laser-assisted machining (in-situ LAM) has been demonstrated to yield superior outcomes in the machining of WC-Co. In this study, the effect of temperature increase on the removal mode of brittle-plastic transition of WC-Co materials is investigated by thermally coupled finite element cutting simulations. The damage mechanism evolved from the surface defect formation process of WC-Co in in-situ LAM is revealed. The cobalt content was employed as a point of departure for an investigation into the influence of elevated cobalt content on the mechanical and thermal properties of WC-Co materials, with a specific focus on fracture toughness, hardness, and thermal expansion. The results indicate that elevated cobalt content tends to enhance the surface integrity and processing quality of the processed material. The machining parameters of WC-Co in-situ LAM were optimized using surface roughness as a characteristic value and the optimized surface roughness value was reduced by 45.9%. This study offers theoretical guidance for the optimization of WC-Co in-situ laser-assisted processing factors, providing a reference for practical technical applications.</p></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"124 ","pages":"Article 106842"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on damage mechanism and surface quality optimization of WC-Co by in-situ laser-assisted turning\",\"authors\":\"Deshi Kong , Guangfeng Shi , Siwei Meng , Ziwei Jiang , Chunyang Zou\",\"doi\":\"10.1016/j.ijrmhm.2024.106842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tungsten carbide (WC-Co) is a material that is frequently employed in the field of optical mold forming. However, the high hardness of WC-Co presents a challenge in machining. In-situ laser-assisted machining (in-situ LAM) has been demonstrated to yield superior outcomes in the machining of WC-Co. In this study, the effect of temperature increase on the removal mode of brittle-plastic transition of WC-Co materials is investigated by thermally coupled finite element cutting simulations. The damage mechanism evolved from the surface defect formation process of WC-Co in in-situ LAM is revealed. The cobalt content was employed as a point of departure for an investigation into the influence of elevated cobalt content on the mechanical and thermal properties of WC-Co materials, with a specific focus on fracture toughness, hardness, and thermal expansion. The results indicate that elevated cobalt content tends to enhance the surface integrity and processing quality of the processed material. The machining parameters of WC-Co in-situ LAM were optimized using surface roughness as a characteristic value and the optimized surface roughness value was reduced by 45.9%. This study offers theoretical guidance for the optimization of WC-Co in-situ laser-assisted processing factors, providing a reference for practical technical applications.</p></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"124 \",\"pages\":\"Article 106842\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436824002907\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824002907","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental study on damage mechanism and surface quality optimization of WC-Co by in-situ laser-assisted turning
Tungsten carbide (WC-Co) is a material that is frequently employed in the field of optical mold forming. However, the high hardness of WC-Co presents a challenge in machining. In-situ laser-assisted machining (in-situ LAM) has been demonstrated to yield superior outcomes in the machining of WC-Co. In this study, the effect of temperature increase on the removal mode of brittle-plastic transition of WC-Co materials is investigated by thermally coupled finite element cutting simulations. The damage mechanism evolved from the surface defect formation process of WC-Co in in-situ LAM is revealed. The cobalt content was employed as a point of departure for an investigation into the influence of elevated cobalt content on the mechanical and thermal properties of WC-Co materials, with a specific focus on fracture toughness, hardness, and thermal expansion. The results indicate that elevated cobalt content tends to enhance the surface integrity and processing quality of the processed material. The machining parameters of WC-Co in-situ LAM were optimized using surface roughness as a characteristic value and the optimized surface roughness value was reduced by 45.9%. This study offers theoretical guidance for the optimization of WC-Co in-situ laser-assisted processing factors, providing a reference for practical technical applications.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.