甲烷水溶液的传输特性以及智能响应型临时堵塞剂在可切换纳米通道中的堵塞行为:耗散粒子动力学模拟研究。

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2024-11-01 Epub Date: 2024-08-11 DOI:10.1002/marc.202400388
Bowen Zhu, Zhongjin He, Guosheng Jiang, Fulong Ning
{"title":"甲烷水溶液的传输特性以及智能响应型临时堵塞剂在可切换纳米通道中的堵塞行为:耗散粒子动力学模拟研究。","authors":"Bowen Zhu, Zhongjin He, Guosheng Jiang, Fulong Ning","doi":"10.1002/marc.202400388","DOIUrl":null,"url":null,"abstract":"<p><p>Intelligent-responsive temporary plugging agents (TPAs) have great potential in the field of oil and gas resource extraction due to their self-adaptability to the environment. However, the transport mechanism of oil and gas molecules, such as aqueous methane solution in intelligent-responsive TPA-modified nano-channels and the blocking behavior of TPA, have not been verified yet. In this work, dissipative particle dynamics simulations (DPD) are conducted to investigate the velocity distribution and the force characteristics of aqueous methane solutions under different driving velocities, as well as the blocking effect of TPA to the flow of solution. Simulation results indicate that aqueous methane solution primarily concentrates in the uncovered area of the TPA and diffuses into the TPA-covered area when the nano-channel is closed. The velocity distribution of the flowing solution in the open nano-channel follows a subparabolic pattern. Methane molecules in the closed nano-channel show sharp oscillations in velocity and force profiles, which can be mitigated by increasing the methane concentration. The designed TPA effectively blocks fluid flow but its head and tail are vulnerable to the shear forces from the fluid. This study enhances the understanding of the nanoflows in the wellbores during the extraction of oil and natural gas resources.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transport Properties of Aqueous Methane Solutions and Blocking Behavior of Intelligent-Responsive Temporary Plugging Agent in a Switchable Nano-channel: A Dissipative Particle Dynamics Simulation Study.\",\"authors\":\"Bowen Zhu, Zhongjin He, Guosheng Jiang, Fulong Ning\",\"doi\":\"10.1002/marc.202400388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intelligent-responsive temporary plugging agents (TPAs) have great potential in the field of oil and gas resource extraction due to their self-adaptability to the environment. However, the transport mechanism of oil and gas molecules, such as aqueous methane solution in intelligent-responsive TPA-modified nano-channels and the blocking behavior of TPA, have not been verified yet. In this work, dissipative particle dynamics simulations (DPD) are conducted to investigate the velocity distribution and the force characteristics of aqueous methane solutions under different driving velocities, as well as the blocking effect of TPA to the flow of solution. Simulation results indicate that aqueous methane solution primarily concentrates in the uncovered area of the TPA and diffuses into the TPA-covered area when the nano-channel is closed. The velocity distribution of the flowing solution in the open nano-channel follows a subparabolic pattern. Methane molecules in the closed nano-channel show sharp oscillations in velocity and force profiles, which can be mitigated by increasing the methane concentration. The designed TPA effectively blocks fluid flow but its head and tail are vulnerable to the shear forces from the fluid. This study enhances the understanding of the nanoflows in the wellbores during the extraction of oil and natural gas resources.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400388\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400388","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

智能响应型暂堵剂(TPA)具有环境自适应能力,在油气资源开采领域具有巨大潜力。然而,油气分子(如甲烷水溶液)在智能响应型 TPA 改性纳米通道中的传输机制以及 TPA 的堵塞行为尚未得到验证。本文通过耗散粒子动力学模拟(DPD)研究了甲烷水溶液在不同驱动速度下的速度分布和受力特性,以及 TPA 对溶液流动的阻滞作用。模拟结果表明,当纳米通道关闭时,甲烷水溶液主要集中在 TPA 未覆盖区域,并扩散到 TPA 覆盖区域。在开放的纳米通道中,流动溶液的速度分布遵循近抛物线模式。在封闭的纳米通道中,甲烷分子的速度和力分布呈现出剧烈的振荡,提高甲烷浓度可减轻这种振荡。所设计的 TPA 能有效阻挡流体流动,但其头部和尾部易受流体剪切力的影响。这项研究加深了人们对石油和天然气资源开采过程中井筒内纳米流的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transport Properties of Aqueous Methane Solutions and Blocking Behavior of Intelligent-Responsive Temporary Plugging Agent in a Switchable Nano-channel: A Dissipative Particle Dynamics Simulation Study.

Intelligent-responsive temporary plugging agents (TPAs) have great potential in the field of oil and gas resource extraction due to their self-adaptability to the environment. However, the transport mechanism of oil and gas molecules, such as aqueous methane solution in intelligent-responsive TPA-modified nano-channels and the blocking behavior of TPA, have not been verified yet. In this work, dissipative particle dynamics simulations (DPD) are conducted to investigate the velocity distribution and the force characteristics of aqueous methane solutions under different driving velocities, as well as the blocking effect of TPA to the flow of solution. Simulation results indicate that aqueous methane solution primarily concentrates in the uncovered area of the TPA and diffuses into the TPA-covered area when the nano-channel is closed. The velocity distribution of the flowing solution in the open nano-channel follows a subparabolic pattern. Methane molecules in the closed nano-channel show sharp oscillations in velocity and force profiles, which can be mitigated by increasing the methane concentration. The designed TPA effectively blocks fluid flow but its head and tail are vulnerable to the shear forces from the fluid. This study enhances the understanding of the nanoflows in the wellbores during the extraction of oil and natural gas resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Surface Engineering of Polymeric Colloidal Crystals by Temperature - Pressure Annealing. Uniform Polymer Microspheres by Photoinduced Metal-Free Atom Transfer Radical Precipitation Polymerization. Varying the Core Topology in All-Glycidol Hyperbranched Polyglycerols: Synthesis and Physical Characterization. α-Trifluoromethylated Quinolines as Safe and Storable PET-Donor for Radical Polymerizations. Linker Group Fluorination Boosts Photovoltaic Performance of Branch-Connected Dimerized Acceptors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1