Yue Fu , Huiyuan Xu , Yuchen Bao , Jin Wang , Xianwu Liu , Qinwan Huang
{"title":"揭开隐藏潜力的面纱:云南帕里斯(Paris yunnanensis Franch.作为一种抗痤疮疗法,它的前景超出了传统的药用范围。","authors":"Yue Fu , Huiyuan Xu , Yuchen Bao , Jin Wang , Xianwu Liu , Qinwan Huang","doi":"10.1016/j.fitote.2024.106179","DOIUrl":null,"url":null,"abstract":"<div><p>The dried rhizomes of <em>Paris yunnanensis</em> Franch<em>.</em> have been extensively utilized in traditional Chinese medicine as hemostatic, antitumor, and antimicrobial agents. An examination of classical texts and renowned Chinese medical formulations showcased its efficacy in acne treatment. Presently, there is a significant scarcity of <em>Paris</em> resources. Consider directing attention towards the non-medicinal parts of <em>Paris</em> to mitigate the strain on medicinal resources within this realm. To address these resource limitations, this study investigated the bioactivity and pharmacodynamics of the above-ground parts of <em>Paris</em> (AGPP). A synergistic approach integrating network pharmacology, molecular docking (in silico validation), and animal experimentation (in vivo validation) was employed to elucidate the potential mechanisms underlying the efficacy of AGPP against acne vulgaris in this study. The active constituents in AGPP extracts were identified via UHPLC-Q-Orbitrap HRMS analysis, with their targets extracted for network pharmacological analysis. KEGG pathway analysis unveiled potential therapeutic mechanisms, validated through molecular docking and rat auricular acne model experiments. Comprehensive chemical characterization revealed fifty constituents, including steroidal saponins, flavonoids, amino acids, organic acids, phytohormones, phenolic acids, and alkaloids. Diosgenin, Quercetin, Kaempferol, Ecdysone, and α-linolenic acid were identified as main constituents with acne-treating potential. Core targets included SRC, MAPK3, and MAPK1, with key signaling pathways implicated. Histologically, AGPP mitigated acne-induced follicular dilatation and inflammation, inhibiting inflammatory cytokine production (IL-6, IL-1β, TNF-α). This study offers insight into AGPP's mechanism for acne treatment, laying groundwork for Paris development and drug discovery.</p></div>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the hidden potential: Above-ground parts of Paris yunnanensis Franch. Is promise as an anti-acne therapeutic beyond traditional medicinal sites\",\"authors\":\"Yue Fu , Huiyuan Xu , Yuchen Bao , Jin Wang , Xianwu Liu , Qinwan Huang\",\"doi\":\"10.1016/j.fitote.2024.106179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dried rhizomes of <em>Paris yunnanensis</em> Franch<em>.</em> have been extensively utilized in traditional Chinese medicine as hemostatic, antitumor, and antimicrobial agents. An examination of classical texts and renowned Chinese medical formulations showcased its efficacy in acne treatment. Presently, there is a significant scarcity of <em>Paris</em> resources. Consider directing attention towards the non-medicinal parts of <em>Paris</em> to mitigate the strain on medicinal resources within this realm. To address these resource limitations, this study investigated the bioactivity and pharmacodynamics of the above-ground parts of <em>Paris</em> (AGPP). A synergistic approach integrating network pharmacology, molecular docking (in silico validation), and animal experimentation (in vivo validation) was employed to elucidate the potential mechanisms underlying the efficacy of AGPP against acne vulgaris in this study. The active constituents in AGPP extracts were identified via UHPLC-Q-Orbitrap HRMS analysis, with their targets extracted for network pharmacological analysis. KEGG pathway analysis unveiled potential therapeutic mechanisms, validated through molecular docking and rat auricular acne model experiments. Comprehensive chemical characterization revealed fifty constituents, including steroidal saponins, flavonoids, amino acids, organic acids, phytohormones, phenolic acids, and alkaloids. Diosgenin, Quercetin, Kaempferol, Ecdysone, and α-linolenic acid were identified as main constituents with acne-treating potential. Core targets included SRC, MAPK3, and MAPK1, with key signaling pathways implicated. Histologically, AGPP mitigated acne-induced follicular dilatation and inflammation, inhibiting inflammatory cytokine production (IL-6, IL-1β, TNF-α). This study offers insight into AGPP's mechanism for acne treatment, laying groundwork for Paris development and drug discovery.</p></div>\",\"PeriodicalId\":12147,\"journal\":{\"name\":\"Fitoterapia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fitoterapia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0367326X24003629\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0367326X24003629","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Unveiling the hidden potential: Above-ground parts of Paris yunnanensis Franch. Is promise as an anti-acne therapeutic beyond traditional medicinal sites
The dried rhizomes of Paris yunnanensis Franch. have been extensively utilized in traditional Chinese medicine as hemostatic, antitumor, and antimicrobial agents. An examination of classical texts and renowned Chinese medical formulations showcased its efficacy in acne treatment. Presently, there is a significant scarcity of Paris resources. Consider directing attention towards the non-medicinal parts of Paris to mitigate the strain on medicinal resources within this realm. To address these resource limitations, this study investigated the bioactivity and pharmacodynamics of the above-ground parts of Paris (AGPP). A synergistic approach integrating network pharmacology, molecular docking (in silico validation), and animal experimentation (in vivo validation) was employed to elucidate the potential mechanisms underlying the efficacy of AGPP against acne vulgaris in this study. The active constituents in AGPP extracts were identified via UHPLC-Q-Orbitrap HRMS analysis, with their targets extracted for network pharmacological analysis. KEGG pathway analysis unveiled potential therapeutic mechanisms, validated through molecular docking and rat auricular acne model experiments. Comprehensive chemical characterization revealed fifty constituents, including steroidal saponins, flavonoids, amino acids, organic acids, phytohormones, phenolic acids, and alkaloids. Diosgenin, Quercetin, Kaempferol, Ecdysone, and α-linolenic acid were identified as main constituents with acne-treating potential. Core targets included SRC, MAPK3, and MAPK1, with key signaling pathways implicated. Histologically, AGPP mitigated acne-induced follicular dilatation and inflammation, inhibiting inflammatory cytokine production (IL-6, IL-1β, TNF-α). This study offers insight into AGPP's mechanism for acne treatment, laying groundwork for Paris development and drug discovery.
期刊介绍:
Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas:
1. Characterization of active ingredients of medicinal plants
2. Development of standardization method for bioactive plant extracts and natural products
3. Identification of bioactivity in plant extracts
4. Identification of targets and mechanism of activity of plant extracts
5. Production and genomic characterization of medicinal plants biomass
6. Chemistry and biochemistry of bioactive natural products of plant origin
7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.