{"title":"组蛋白去乙酰化酶抑制剂和 PD-1 阻断剂通过促进 T 细胞浸润和凋亡,协同抑制小鼠模型中 B 细胞淋巴瘤的进展。","authors":"Tong Wang, Xu Ye, Hao Jiang, Yu Gao","doi":"10.3892/or.2024.8792","DOIUrl":null,"url":null,"abstract":"<p><p>B‑cell lymphoma is difficult to cure because of its biological and clinical heterogeneity, and due to native chemoresistance. Immunotherapies that overcome cancer‑induced immune evasion have been the center of recent developments in oncology. This is emphasized by the accomplishment of various agents that disrupt programmed cell death protein 1 (PD‑1)‑mediated immune suppression in diverse tumors. However, while PD‑1 blockade has been effective in numerous malignancies, a significant proportion of cancers, including B‑cell lymphoma, show certain rates of primary resistance to these therapeutic strategies. Histone deacetylase inhibitors (HDACis) have exhibited anticancer activity though suppressing cell proliferation, inducing differentiation and triggering apoptosis. The present study aimed to explore a therapeutic strategy combining a HDACi (romidepsin) and PD‑1 blockade (BMS‑1) in B‑cell lymphoma, utilizing a constructed mouse model of B‑cell lymphoma. The IC<sub>50</sub> of the two inhibitors was confirmed by MTT assay, and their inhibitory effects were revealed to be dose‑ and time‑dependent. The data demonstrated that the combined treatment of romidepsin and BMS‑1 synergistically inhibited the growth of B‑cell lymphoma. Furthermore, it was revealed that romidepsin and BMS‑1 synergistically triggered apoptosis in mouse B‑cell lymphoma. The synergistic effect of these agents was capable of activating tumor‑infiltrating lymphocytes, particularly CD3<sup>+</sup>CD4<sup>+</sup> and CD3<sup>+</sup>CD8<sup>+</sup> T cells. The results of the present study underscore the potential of HDAC inhibition in conjunction with PD‑1 blockade as a novel therapeutic approach for B‑cell lymphoma, highlighting the synergistic effects of these two mechanisms in enhancing antitumor immunity.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"52 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histone deacetylase inhibitor and PD‑1 blockade synergistically inhibit B‑cell lymphoma progression in mice model by promoting T‑cell infiltration and apoptosis.\",\"authors\":\"Tong Wang, Xu Ye, Hao Jiang, Yu Gao\",\"doi\":\"10.3892/or.2024.8792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B‑cell lymphoma is difficult to cure because of its biological and clinical heterogeneity, and due to native chemoresistance. Immunotherapies that overcome cancer‑induced immune evasion have been the center of recent developments in oncology. This is emphasized by the accomplishment of various agents that disrupt programmed cell death protein 1 (PD‑1)‑mediated immune suppression in diverse tumors. However, while PD‑1 blockade has been effective in numerous malignancies, a significant proportion of cancers, including B‑cell lymphoma, show certain rates of primary resistance to these therapeutic strategies. Histone deacetylase inhibitors (HDACis) have exhibited anticancer activity though suppressing cell proliferation, inducing differentiation and triggering apoptosis. The present study aimed to explore a therapeutic strategy combining a HDACi (romidepsin) and PD‑1 blockade (BMS‑1) in B‑cell lymphoma, utilizing a constructed mouse model of B‑cell lymphoma. The IC<sub>50</sub> of the two inhibitors was confirmed by MTT assay, and their inhibitory effects were revealed to be dose‑ and time‑dependent. The data demonstrated that the combined treatment of romidepsin and BMS‑1 synergistically inhibited the growth of B‑cell lymphoma. Furthermore, it was revealed that romidepsin and BMS‑1 synergistically triggered apoptosis in mouse B‑cell lymphoma. The synergistic effect of these agents was capable of activating tumor‑infiltrating lymphocytes, particularly CD3<sup>+</sup>CD4<sup>+</sup> and CD3<sup>+</sup>CD8<sup>+</sup> T cells. The results of the present study underscore the potential of HDAC inhibition in conjunction with PD‑1 blockade as a novel therapeutic approach for B‑cell lymphoma, highlighting the synergistic effects of these two mechanisms in enhancing antitumor immunity.</p>\",\"PeriodicalId\":19527,\"journal\":{\"name\":\"Oncology reports\",\"volume\":\"52 4\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncology reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/or.2024.8792\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2024.8792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
B细胞淋巴瘤因其生物学和临床异质性以及原生化疗抗药性而难以治愈。克服癌症诱导的免疫逃避的免疫疗法一直是肿瘤学近期发展的中心。在不同的肿瘤中,各种能破坏程序性细胞死亡蛋白 1(PD-1)介导的免疫抑制的药物都取得了突出的成就。然而,虽然 PD-1 阻断对许多恶性肿瘤有效,但包括 B 细胞淋巴瘤在内的相当一部分癌症对这些治疗策略表现出一定的原发性耐药性。组蛋白去乙酰化酶抑制剂(HDACis)通过抑制细胞增殖、诱导分化和引发细胞凋亡而显示出抗癌活性。本研究旨在利用构建的 B 细胞淋巴瘤小鼠模型,探索一种结合 HDACi(罗米地平)和 PD-1 阻断(BMS-1)的 B 细胞淋巴瘤治疗策略。通过 MTT 试验确定了两种抑制剂的 IC50 值,并发现它们的抑制作用具有剂量和时间依赖性。数据表明,romidepsin 和 BMS-1 联合治疗可协同抑制 B 细胞淋巴瘤的生长。此外,研究还发现罗米地辛和 BMS-1 能协同引发小鼠 B 细胞淋巴瘤的细胞凋亡。这些药物的协同作用能够激活肿瘤浸润淋巴细胞,尤其是 CD3+CD4+ 和 CD3+CD8+ T 细胞。本研究的结果强调了HDAC抑制与PD-1阻断结合作为B细胞淋巴瘤新型治疗方法的潜力,突出了这两种机制在增强抗肿瘤免疫力方面的协同作用。
Histone deacetylase inhibitor and PD‑1 blockade synergistically inhibit B‑cell lymphoma progression in mice model by promoting T‑cell infiltration and apoptosis.
B‑cell lymphoma is difficult to cure because of its biological and clinical heterogeneity, and due to native chemoresistance. Immunotherapies that overcome cancer‑induced immune evasion have been the center of recent developments in oncology. This is emphasized by the accomplishment of various agents that disrupt programmed cell death protein 1 (PD‑1)‑mediated immune suppression in diverse tumors. However, while PD‑1 blockade has been effective in numerous malignancies, a significant proportion of cancers, including B‑cell lymphoma, show certain rates of primary resistance to these therapeutic strategies. Histone deacetylase inhibitors (HDACis) have exhibited anticancer activity though suppressing cell proliferation, inducing differentiation and triggering apoptosis. The present study aimed to explore a therapeutic strategy combining a HDACi (romidepsin) and PD‑1 blockade (BMS‑1) in B‑cell lymphoma, utilizing a constructed mouse model of B‑cell lymphoma. The IC50 of the two inhibitors was confirmed by MTT assay, and their inhibitory effects were revealed to be dose‑ and time‑dependent. The data demonstrated that the combined treatment of romidepsin and BMS‑1 synergistically inhibited the growth of B‑cell lymphoma. Furthermore, it was revealed that romidepsin and BMS‑1 synergistically triggered apoptosis in mouse B‑cell lymphoma. The synergistic effect of these agents was capable of activating tumor‑infiltrating lymphocytes, particularly CD3+CD4+ and CD3+CD8+ T cells. The results of the present study underscore the potential of HDAC inhibition in conjunction with PD‑1 blockade as a novel therapeutic approach for B‑cell lymphoma, highlighting the synergistic effects of these two mechanisms in enhancing antitumor immunity.
期刊介绍:
Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.