推进心肌梗塞治疗:利用胎儿心肌支架和细胞羊膜的多层再细胞化心脏贴片。

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS Cardiovascular Engineering and Technology Pub Date : 2024-12-01 Epub Date: 2024-08-12 DOI:10.1007/s13239-024-00744-z
Zahra Hassannejad, Kiarad Fendereski, Seyedeh Sima Daryabari, Saman Behboodi Tanourlouee, Mehrshad Dehnavi, Abdol-Mohammad Kajbafzadeh
{"title":"推进心肌梗塞治疗:利用胎儿心肌支架和细胞羊膜的多层再细胞化心脏贴片。","authors":"Zahra Hassannejad, Kiarad Fendereski, Seyedeh Sima Daryabari, Saman Behboodi Tanourlouee, Mehrshad Dehnavi, Abdol-Mohammad Kajbafzadeh","doi":"10.1007/s13239-024-00744-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI.</p><p><strong>Methods: </strong>Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation.</p><p><strong>Results: </strong>Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability.</p><p><strong>Conclusions: </strong>This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":"679-690"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Myocardial Infarction Treatment: Harnessing Multi-Layered Recellularized Cardiac Patches with Fetal Myocardial Scaffolds and Acellular Amniotic Membrane.\",\"authors\":\"Zahra Hassannejad, Kiarad Fendereski, Seyedeh Sima Daryabari, Saman Behboodi Tanourlouee, Mehrshad Dehnavi, Abdol-Mohammad Kajbafzadeh\",\"doi\":\"10.1007/s13239-024-00744-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI.</p><p><strong>Methods: </strong>Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation.</p><p><strong>Results: </strong>Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability.</p><p><strong>Conclusions: </strong>This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.</p>\",\"PeriodicalId\":54322,\"journal\":{\"name\":\"Cardiovascular Engineering and Technology\",\"volume\":\" \",\"pages\":\"679-690\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cardiovascular Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13239-024-00744-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-024-00744-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:心肌梗塞(MI)是造成不可逆转的心脏功能组织丧失的主要原因,需要新型再生策略。本研究评估了再细胞化心脏补片的潜在疗效,再细胞化心脏补片将胎儿心肌支架与大鼠胎儿心肌细胞和无细胞人羊膜结合在一起,用于成年 Wistar 大鼠心肌梗死模型:脱细胞心肌组织取自14至16周大的流产人类胎儿。使用化学洗涤剂(0.1% EDTA 和 0.2% 十二烷基硫酸钠)制备胎儿细胞外基质(ECM),并分别通过扫描电子显微镜(SEM)和 MTT 试验对其生物支架微结构和生物相容性进行表征。从出生一天的 Wistar 大鼠心室中提取新生儿心肌细胞,并通过针对 Connexin-43 和 α 平滑肌肌动蛋白的免疫染色法对其进行鉴定。分离出的细胞被播种到脱细胞组织上,并覆盖脱细胞羊膜。16 只健康的成年 Wistar 大鼠被系统地分配到对照组和心肌缺血组。通过动脉结扎诱发心肌梗死。手术后 14 天,MI 组接受工程补片。植入后两周,动物被安乐死,并收获心脏进行移植评估:结果:组织学分析、DAPI 染色和超微结构检查证实了细胞成分的成功去除,同时保持了胎儿 ECM 和结构的完整性。随后的组织学和免疫组化(IHC)评估证实了心肌细胞在支架上的有效播种。在心肌梗死模型中应用这些工程补片后,血管生成增加、纤维化减少、瘢痕组织形成受限,植入的心肌细胞在移植物部位仍能存活,这表明细胞在体内有望存活:这项研究表明,多层再细胞化心脏补片是治疗心肌梗死的一种很有前景的外科干预方法,它在心肌梗死模型中促进血管生成、减轻纤维化和减少瘢痕组织形成,显示出巨大的潜力。这些特点对于提高心肌梗塞患者的治疗效果至关重要,重点在于恢复心肌梗塞后的心肌结构和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Myocardial Infarction Treatment: Harnessing Multi-Layered Recellularized Cardiac Patches with Fetal Myocardial Scaffolds and Acellular Amniotic Membrane.

Purpose: Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI.

Methods: Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation.

Results: Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability.

Conclusions: This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
期刊最新文献
Investigation of Inter-Patient, Intra-Patient, and Patient-Specific Based Training in Deep Learning for Classification of Heartbeat Arrhythmia. Automated Coronary Artery Segmentation with 3D PSPNET using Global Processing and Patch Based Methods on CCTA Images. The Impact of Peripheral Vascular Motion on Acute Drug Retention of Intravascular Devices. Performance Comparison of Centered and Tilted Blunt and Lighthouse Tip Cannulae for Drainage in Extracorporeal Life Support. A Novel Transcatheter Device to Treat Calcific Aortic Valve Stenosis: An Ex Vivo Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1