基于仿真的脊柱注射单芯 FBG 反馈灵活针头控制。

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-07-02 DOI:10.1109/TMRB.2024.3421630
Yanzhou Wang;Yangsheng Xu;Jiarong Kang;Jan Fritz;Iulian Iordachita
{"title":"基于仿真的脊柱注射单芯 FBG 反馈灵活针头控制。","authors":"Yanzhou Wang;Yangsheng Xu;Jiarong Kang;Jan Fritz;Iulian Iordachita","doi":"10.1109/TMRB.2024.3421630","DOIUrl":null,"url":null,"abstract":"Objective: We present a general framework of simultaneous needle shape reconstruction and control input generation for robot-assisted spinal injection procedures, without continuous imaging feedback. Methods: System input-output mapping is generated with a real-time needle-tissue interaction simulation, and single-core FBG sensor readings are used as local needle shape feedback within the same simulation framework. FBG wavelength shifts due to temperature variation is removed by exploiting redundancy in fiber arrangement. Results: Targeting experiments performed on both plastisol lumbar phantoms as well as an ex vivo porcine lumbar section achieved in-plane tip errors of \n<inline-formula> <tex-math>$0.6 \\pm 0.3$ </tex-math></inline-formula>\n mm and \n<inline-formula> <tex-math>$1.6 \\pm 0.9$ </tex-math></inline-formula>\n mm, and total tip errors of \n<inline-formula> <tex-math>$0.9 \\pm 0.7$ </tex-math></inline-formula>\n mm and \n<inline-formula> <tex-math>$2.1 \\pm 0.8$ </tex-math></inline-formula>\n mm for the two testing environments. Significance: Our clinically inspired control strategy and workflow is self-contained and not dependent on the modality of imaging guidance. The generalizability of the proposed approach can be applied to other needle-based interventions where medical imaging cannot be reliably utilized as part of a closed-loop control system for needle guidance.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 3","pages":"1073-1083"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation-Based Flexible Needle Control With Single-Core FBG Feedback for Spinal Injections\",\"authors\":\"Yanzhou Wang;Yangsheng Xu;Jiarong Kang;Jan Fritz;Iulian Iordachita\",\"doi\":\"10.1109/TMRB.2024.3421630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: We present a general framework of simultaneous needle shape reconstruction and control input generation for robot-assisted spinal injection procedures, without continuous imaging feedback. Methods: System input-output mapping is generated with a real-time needle-tissue interaction simulation, and single-core FBG sensor readings are used as local needle shape feedback within the same simulation framework. FBG wavelength shifts due to temperature variation is removed by exploiting redundancy in fiber arrangement. Results: Targeting experiments performed on both plastisol lumbar phantoms as well as an ex vivo porcine lumbar section achieved in-plane tip errors of \\n<inline-formula> <tex-math>$0.6 \\\\pm 0.3$ </tex-math></inline-formula>\\n mm and \\n<inline-formula> <tex-math>$1.6 \\\\pm 0.9$ </tex-math></inline-formula>\\n mm, and total tip errors of \\n<inline-formula> <tex-math>$0.9 \\\\pm 0.7$ </tex-math></inline-formula>\\n mm and \\n<inline-formula> <tex-math>$2.1 \\\\pm 0.8$ </tex-math></inline-formula>\\n mm for the two testing environments. Significance: Our clinically inspired control strategy and workflow is self-contained and not dependent on the modality of imaging guidance. The generalizability of the proposed approach can be applied to other needle-based interventions where medical imaging cannot be reliably utilized as part of a closed-loop control system for needle guidance.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"6 3\",\"pages\":\"1073-1083\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10581411/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10581411/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的我们为机器人辅助脊柱注射程序提出了一个在没有连续成像反馈的情况下同时进行针形重建和控制输入生成的通用框架:方法:系统输入输出映射由实时针与组织交互模拟生成,单芯 FBG 传感器读数在同一模拟框架内用作局部针形状反馈。利用光纤排列的冗余性,消除了温度变化引起的 FBG 波长偏移:结果:在塑溶腰椎模型和活体猪腰椎切片上进行的靶向实验,在两种测试环境下,针尖平面内误差分别为 0.6 ± 0.3 毫米和 1.6 ± 0.9 毫米,针尖总误差分别为 0.9 ± 0.7 毫米和 2.1 ± 0.8 毫米:我们的控制策略和工作流程自成一体,不依赖于成像引导方式。建议方法的通用性可应用于其他以针为基础的介入治疗,在这些治疗中,医学影像不能可靠地用作针引导闭环控制系统的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation-Based Flexible Needle Control With Single-Core FBG Feedback for Spinal Injections
Objective: We present a general framework of simultaneous needle shape reconstruction and control input generation for robot-assisted spinal injection procedures, without continuous imaging feedback. Methods: System input-output mapping is generated with a real-time needle-tissue interaction simulation, and single-core FBG sensor readings are used as local needle shape feedback within the same simulation framework. FBG wavelength shifts due to temperature variation is removed by exploiting redundancy in fiber arrangement. Results: Targeting experiments performed on both plastisol lumbar phantoms as well as an ex vivo porcine lumbar section achieved in-plane tip errors of $0.6 \pm 0.3$ mm and $1.6 \pm 0.9$ mm, and total tip errors of $0.9 \pm 0.7$ mm and $2.1 \pm 0.8$ mm for the two testing environments. Significance: Our clinically inspired control strategy and workflow is self-contained and not dependent on the modality of imaging guidance. The generalizability of the proposed approach can be applied to other needle-based interventions where medical imaging cannot be reliably utilized as part of a closed-loop control system for needle guidance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE Transactions on Medical Robotics and Bionics Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1