经过基因组编辑的高性能人造木材

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-10-02 DOI:10.1016/j.matt.2024.07.003
Yu Liu , Gen Li , Yimin Mao , Yue Gao , Minhua Zhao , Alexandra Brozena , Derrick Wang , Samuel von Keitz , Taotao Meng , Hoon Kim , Xuejun Pan , Yiping Qi , Liangbing Hu
{"title":"经过基因组编辑的高性能人造木材","authors":"Yu Liu ,&nbsp;Gen Li ,&nbsp;Yimin Mao ,&nbsp;Yue Gao ,&nbsp;Minhua Zhao ,&nbsp;Alexandra Brozena ,&nbsp;Derrick Wang ,&nbsp;Samuel von Keitz ,&nbsp;Taotao Meng ,&nbsp;Hoon Kim ,&nbsp;Xuejun Pan ,&nbsp;Yiping Qi ,&nbsp;Liangbing Hu","doi":"10.1016/j.matt.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><div>Replacing conventional structural materials with high-performance engineered wood can reduce CO<sub>2</sub> emissions and enhance carbon sequestration. Traditional methods involve energy-intensive chemical treatments to reduce lignin content, resulting in denser, mechanically superior wood but raising sustainability concerns. This work introduces a genome-editing approach to reduce lignin in trees, enabling chemical-free processing of advanced engineered wood. Using the cytosine base editor nCas9-A3A/Y130F, the <em>4CL1</em> gene in poplar wood was targeted, achieving a 12.8% lignin reduction. This facilitated waste-free densified wood production through water immersion and hot pressing, yielding a tensile strength of 313.6 ± 6.4 MPa, comparable to aluminum alloy 6061. The strength of densified <em>4CL1</em> knockout wood closely matched that of traditionally treated wood (320.2 ± 3.5 MPa), demonstrating the effectiveness of genetic modification in creating sustainable, high-performance engineered wood and contributing to reduced CO<sub>2</sub> emissions and environmental conservation.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3658-3671"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-edited trees for high-performance engineered wood\",\"authors\":\"Yu Liu ,&nbsp;Gen Li ,&nbsp;Yimin Mao ,&nbsp;Yue Gao ,&nbsp;Minhua Zhao ,&nbsp;Alexandra Brozena ,&nbsp;Derrick Wang ,&nbsp;Samuel von Keitz ,&nbsp;Taotao Meng ,&nbsp;Hoon Kim ,&nbsp;Xuejun Pan ,&nbsp;Yiping Qi ,&nbsp;Liangbing Hu\",\"doi\":\"10.1016/j.matt.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Replacing conventional structural materials with high-performance engineered wood can reduce CO<sub>2</sub> emissions and enhance carbon sequestration. Traditional methods involve energy-intensive chemical treatments to reduce lignin content, resulting in denser, mechanically superior wood but raising sustainability concerns. This work introduces a genome-editing approach to reduce lignin in trees, enabling chemical-free processing of advanced engineered wood. Using the cytosine base editor nCas9-A3A/Y130F, the <em>4CL1</em> gene in poplar wood was targeted, achieving a 12.8% lignin reduction. This facilitated waste-free densified wood production through water immersion and hot pressing, yielding a tensile strength of 313.6 ± 6.4 MPa, comparable to aluminum alloy 6061. The strength of densified <em>4CL1</em> knockout wood closely matched that of traditionally treated wood (320.2 ± 3.5 MPa), demonstrating the effectiveness of genetic modification in creating sustainable, high-performance engineered wood and contributing to reduced CO<sub>2</sub> emissions and environmental conservation.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 10\",\"pages\":\"Pages 3658-3671\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524003965\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003965","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用高性能工程木材替代传统结构材料可以减少二氧化碳排放,提高碳固存效果。传统方法涉及高能耗的化学处理,以降低木质素含量,从而获得密度更大、机械性能更优的木材,但却引发了可持续发展的担忧。这项研究引入了一种基因组编辑方法来减少树木中的木质素,从而实现先进工程木材的无化学处理。利用胞嘧啶碱基编辑器 nCas9-A3A/Y130F,以杨木中的 4CL1 基因为目标,实现了 12.8% 的木质素减少。这有助于通过水浸和热压生产出无废料的致密木材,其抗拉强度为 313.6 ± 6.4 兆帕,与铝合金 6061 相当。致密化 4CL1 基因敲除木材的强度与传统处理木材的强度(320.2 ± 3.5 兆帕)非常接近,这证明了基因改造在制造可持续、高性能工程木材方面的有效性,并有助于减少二氧化碳排放和保护环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-edited trees for high-performance engineered wood
Replacing conventional structural materials with high-performance engineered wood can reduce CO2 emissions and enhance carbon sequestration. Traditional methods involve energy-intensive chemical treatments to reduce lignin content, resulting in denser, mechanically superior wood but raising sustainability concerns. This work introduces a genome-editing approach to reduce lignin in trees, enabling chemical-free processing of advanced engineered wood. Using the cytosine base editor nCas9-A3A/Y130F, the 4CL1 gene in poplar wood was targeted, achieving a 12.8% lignin reduction. This facilitated waste-free densified wood production through water immersion and hot pressing, yielding a tensile strength of 313.6 ± 6.4 MPa, comparable to aluminum alloy 6061. The strength of densified 4CL1 knockout wood closely matched that of traditionally treated wood (320.2 ± 3.5 MPa), demonstrating the effectiveness of genetic modification in creating sustainable, high-performance engineered wood and contributing to reduced CO2 emissions and environmental conservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1