垂直腔表面发射激光器中光子的玻色-爱因斯坦凝聚

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2024-08-12 DOI:10.1038/s41566-024-01478-z
Maciej Pieczarka, Marcin Gębski, Aleksandra N. Piasecka, James A. Lott, Axel Pelster, Michał Wasiak, Tomasz Czyszanowski
{"title":"垂直腔表面发射激光器中光子的玻色-爱因斯坦凝聚","authors":"Maciej Pieczarka, Marcin Gębski, Aleksandra N. Piasecka, James A. Lott, Axel Pelster, Michał Wasiak, Tomasz Czyszanowski","doi":"10.1038/s41566-024-01478-z","DOIUrl":null,"url":null,"abstract":"Many bosons can occupy a single quantum state without a limit. It is described by the quantum-mechanical Bose–Einstein statistic, which allows Bose–Einstein condensation at low temperatures and high particle densities. Photons, historically the first considered bosonic gas, were late to show this phenomenon, observed in rhodamine-filled microcavities and doped fibre cavities. These findings have raised the question of whether condensation is also common in other laser systems with potential technological applications. Here we show the Bose–Einstein condensation of photons in a broad-area vertical-cavity surface-emitting laser with a slight cavity-gain spectral detuning. We observed a Bose–Einstein condensate in the fundamental transversal optical mode at a critical phase-space density. The experimental results follow the equation of state for a two-dimensional gas of bosons in thermal equilibrium, although the extracted spectral temperatures were lower than the device’s. This is interpreted as originating from the driven-dissipative nature of the photon gas. In contrast, non-equilibrium lasing action is observed in the higher-order modes in more negatively detuned device. Our work opens the way for the potential exploration of superfluid physics of interacting photons mediated by semiconductor optical nonlinearities. It also shows great promise for enabling single-mode high-power emission from a large-aperture device. Bose–Einstein condensation of photons is demonstrated in a large-aperture electrically driven InGaAs vertical-cavity surface-emitting laser diode at room temperature. The observed photon Bose–Einstein condensate exhibits the fundamental transversal optical mode at a critical phase-space density.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 10","pages":"1090-1096"},"PeriodicalIF":32.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41566-024-01478-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser\",\"authors\":\"Maciej Pieczarka, Marcin Gębski, Aleksandra N. Piasecka, James A. Lott, Axel Pelster, Michał Wasiak, Tomasz Czyszanowski\",\"doi\":\"10.1038/s41566-024-01478-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many bosons can occupy a single quantum state without a limit. It is described by the quantum-mechanical Bose–Einstein statistic, which allows Bose–Einstein condensation at low temperatures and high particle densities. Photons, historically the first considered bosonic gas, were late to show this phenomenon, observed in rhodamine-filled microcavities and doped fibre cavities. These findings have raised the question of whether condensation is also common in other laser systems with potential technological applications. Here we show the Bose–Einstein condensation of photons in a broad-area vertical-cavity surface-emitting laser with a slight cavity-gain spectral detuning. We observed a Bose–Einstein condensate in the fundamental transversal optical mode at a critical phase-space density. The experimental results follow the equation of state for a two-dimensional gas of bosons in thermal equilibrium, although the extracted spectral temperatures were lower than the device’s. This is interpreted as originating from the driven-dissipative nature of the photon gas. In contrast, non-equilibrium lasing action is observed in the higher-order modes in more negatively detuned device. Our work opens the way for the potential exploration of superfluid physics of interacting photons mediated by semiconductor optical nonlinearities. It also shows great promise for enabling single-mode high-power emission from a large-aperture device. Bose–Einstein condensation of photons is demonstrated in a large-aperture electrically driven InGaAs vertical-cavity surface-emitting laser diode at room temperature. The observed photon Bose–Einstein condensate exhibits the fundamental transversal optical mode at a critical phase-space density.\",\"PeriodicalId\":18926,\"journal\":{\"name\":\"Nature Photonics\",\"volume\":\"18 10\",\"pages\":\"1090-1096\"},\"PeriodicalIF\":32.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41566-024-01478-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41566-024-01478-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01478-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

许多玻色子可以无限制地占据一个量子态。它由量子力学玻色-爱因斯坦统计量描述,可以在低温和高粒子密度下实现玻色-爱因斯坦凝聚。光子是历史上第一个被认为是玻色子气体的物质,它很晚才显示出这种现象,在充满罗丹明的微腔和掺杂光纤腔中观察到了这种现象。这些发现提出了一个问题:凝结现象在其他具有潜在技术应用价值的激光系统中是否也很常见?在这里,我们展示了在具有轻微腔增益光谱失谐的广域垂直腔表面发射激光器中光子的玻色-爱因斯坦凝聚。我们在临界相空间密度下的基本横向光学模式中观测到了玻色-爱因斯坦凝聚。实验结果符合热平衡中玻色子二维气体的状态方程,尽管提取的光谱温度低于设备的温度。这被解释为源于光子气体的驱动-耗散性质。与此相反,在负失谐装置的高阶模式中观察到了非平衡激光作用。我们的工作为探索由半导体光学非线性介导的相互作用光子的超流体物理学开辟了道路。它还显示了从大孔径器件实现单模高功率发射的巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bose–Einstein condensation of photons in a vertical-cavity surface-emitting laser
Many bosons can occupy a single quantum state without a limit. It is described by the quantum-mechanical Bose–Einstein statistic, which allows Bose–Einstein condensation at low temperatures and high particle densities. Photons, historically the first considered bosonic gas, were late to show this phenomenon, observed in rhodamine-filled microcavities and doped fibre cavities. These findings have raised the question of whether condensation is also common in other laser systems with potential technological applications. Here we show the Bose–Einstein condensation of photons in a broad-area vertical-cavity surface-emitting laser with a slight cavity-gain spectral detuning. We observed a Bose–Einstein condensate in the fundamental transversal optical mode at a critical phase-space density. The experimental results follow the equation of state for a two-dimensional gas of bosons in thermal equilibrium, although the extracted spectral temperatures were lower than the device’s. This is interpreted as originating from the driven-dissipative nature of the photon gas. In contrast, non-equilibrium lasing action is observed in the higher-order modes in more negatively detuned device. Our work opens the way for the potential exploration of superfluid physics of interacting photons mediated by semiconductor optical nonlinearities. It also shows great promise for enabling single-mode high-power emission from a large-aperture device. Bose–Einstein condensation of photons is demonstrated in a large-aperture electrically driven InGaAs vertical-cavity surface-emitting laser diode at room temperature. The observed photon Bose–Einstein condensate exhibits the fundamental transversal optical mode at a critical phase-space density.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Topological orbital angular momentum extraction and twofold protection of vortex transport Expanding momentum bandgaps in photonic time crystals through resonances Author Correction: Image-guided computational holographic wavefront shaping Efficient and stable perovskite-silicon tandem solar cells with copper thiocyanate-embedded perovskite on textured silicon Attosecond transient interferometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1