通过二氧化碳的电催化转化高效生产甲酸盐的双金属 Bi-In 纳米粒子

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-08-10 DOI:10.1007/s10008-024-06042-x
Chenyang Mo, Chan Yang, Yarong Hu, Juan Peng
{"title":"通过二氧化碳的电催化转化高效生产甲酸盐的双金属 Bi-In 纳米粒子","authors":"Chenyang Mo,&nbsp;Chan Yang,&nbsp;Yarong Hu,&nbsp;Juan Peng","doi":"10.1007/s10008-024-06042-x","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic reduction of CO<sub>2</sub> to valuable chemicals can alleviate the energy crisis and reduce the greenhouse effect. Herein, bimetallic Bi<sub>x</sub>In<sub>y</sub> (x, y is percentage composition) nanoparticles (NPs) were successfully prepared and utilized as electrocatalysts for electrochemical conversion of CO<sub>2</sub> to formate. By changing the Bi/In atom ratio and varying the amount of surfactant PVP and solvent DMF, the surface morphology of and the electronic structure of Bi<sub>x</sub>In<sub>y</sub> catalysts can be optimized. The optimized Bi<sub>88.77</sub>In<sub>11.23</sub> NPs were the most favorable for formate formation and the FE (Faradaic efficiency) of formate reached 94.29% at a potential of − 1.0 V (vs. RHE). The DFT calculations confirmed that the synergistic effect of bimetallic and dense nanoparticle structures promotes the adsorption of CO<sub>2</sub> molecules and major <sup>*</sup>OCHO intermediates at active sites, thus accelerating the reaction rate. The Bi<sub>88.77</sub>In<sub>11.23</sub> NPs were further employed as cathode coupling oxygen evolution reaction to construct a two-electrode electrolysis system (CO<sub>2</sub>RR‖OER). The whole electrolysis needed a low cell voltage of 3.4 V to deliver 10 mA/cm<sup>2</sup>. This study will provide an efficient approach to enhance the activity and selectivity for CO<sub>2</sub>RR by the synergistic effect of bimetal.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bimetallic Bi-In nanoparticles for efficient production of formate via electrocatalytic conversion of CO2\",\"authors\":\"Chenyang Mo,&nbsp;Chan Yang,&nbsp;Yarong Hu,&nbsp;Juan Peng\",\"doi\":\"10.1007/s10008-024-06042-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalytic reduction of CO<sub>2</sub> to valuable chemicals can alleviate the energy crisis and reduce the greenhouse effect. Herein, bimetallic Bi<sub>x</sub>In<sub>y</sub> (x, y is percentage composition) nanoparticles (NPs) were successfully prepared and utilized as electrocatalysts for electrochemical conversion of CO<sub>2</sub> to formate. By changing the Bi/In atom ratio and varying the amount of surfactant PVP and solvent DMF, the surface morphology of and the electronic structure of Bi<sub>x</sub>In<sub>y</sub> catalysts can be optimized. The optimized Bi<sub>88.77</sub>In<sub>11.23</sub> NPs were the most favorable for formate formation and the FE (Faradaic efficiency) of formate reached 94.29% at a potential of − 1.0 V (vs. RHE). The DFT calculations confirmed that the synergistic effect of bimetallic and dense nanoparticle structures promotes the adsorption of CO<sub>2</sub> molecules and major <sup>*</sup>OCHO intermediates at active sites, thus accelerating the reaction rate. The Bi<sub>88.77</sub>In<sub>11.23</sub> NPs were further employed as cathode coupling oxygen evolution reaction to construct a two-electrode electrolysis system (CO<sub>2</sub>RR‖OER). The whole electrolysis needed a low cell voltage of 3.4 V to deliver 10 mA/cm<sup>2</sup>. This study will provide an efficient approach to enhance the activity and selectivity for CO<sub>2</sub>RR by the synergistic effect of bimetal.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06042-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06042-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

通过电催化将二氧化碳还原成有价值的化学物质可以缓解能源危机和减少温室效应。本文成功制备了双金属 BixIny(x、y 为百分比组成)纳米粒子(NPs),并将其用作电化学将 CO2 转化为甲酸盐的电催化剂。通过改变 Bi/In 原子比例、表面活性剂 PVP 和溶剂 DMF 的用量,可以优化 BixIny 催化剂的表面形貌和电子结构。优化后的Bi88.77In11.23 NPs最有利于甲酸盐的形成,在电位为-1.0 V(相对于RHE)时,甲酸盐的FE(法拉第效率)达到94.29%。DFT 计算证实,双金属和致密纳米粒子结构的协同效应促进了活性位点对 CO2 分子和主要 *OCHO 中间产物的吸附,从而加快了反应速率。Bi88.77In11.23 纳米粒子被进一步用作耦合氧进化反应的阴极,从而构建了双电极电解系统(CO2RR‖OER)。整个电解过程只需要 3.4 V 的低电池电压就能提供 10 mA/cm2 的电流。这项研究将为利用双金属的协同效应提高 CO2RR 的活性和选择性提供一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bimetallic Bi-In nanoparticles for efficient production of formate via electrocatalytic conversion of CO2

Electrocatalytic reduction of CO2 to valuable chemicals can alleviate the energy crisis and reduce the greenhouse effect. Herein, bimetallic BixIny (x, y is percentage composition) nanoparticles (NPs) were successfully prepared and utilized as electrocatalysts for electrochemical conversion of CO2 to formate. By changing the Bi/In atom ratio and varying the amount of surfactant PVP and solvent DMF, the surface morphology of and the electronic structure of BixIny catalysts can be optimized. The optimized Bi88.77In11.23 NPs were the most favorable for formate formation and the FE (Faradaic efficiency) of formate reached 94.29% at a potential of − 1.0 V (vs. RHE). The DFT calculations confirmed that the synergistic effect of bimetallic and dense nanoparticle structures promotes the adsorption of CO2 molecules and major *OCHO intermediates at active sites, thus accelerating the reaction rate. The Bi88.77In11.23 NPs were further employed as cathode coupling oxygen evolution reaction to construct a two-electrode electrolysis system (CO2RR‖OER). The whole electrolysis needed a low cell voltage of 3.4 V to deliver 10 mA/cm2. This study will provide an efficient approach to enhance the activity and selectivity for CO2RR by the synergistic effect of bimetal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Voltammetric determination of hydroxymethylfurfural in honey using screen-printed carbon electrodes: optimization and in-house validation tests Comparative analysis of pH sensing performance of nitrogen-doped ZnO on screen-printed silver and carbon electrodes Effect of electrodeposition of AuPt nanostructure thin films on the electrocatalytic activity of counter electrodes: DSSCs application Study of superhydrophobicity and corrosion resistance of electrodeposited Zn-Ni-HDTMS coating Screen-printed carbon electrode modified with AgNPs obtained via green synthesis for acetaminophen determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1