与亚甲基蓝阻抗检测同时进行的二氧化钛纳米管自掺杂的合成、表征和机理研究

IF 2.6 4区 化学 Q3 ELECTROCHEMISTRY Journal of Solid State Electrochemistry Pub Date : 2024-08-10 DOI:10.1007/s10008-024-06027-w
Pablo C. Soto, João V. Martins, Gabrielle Sarto, Maiara M. Slonski, Helder S. Anizelli, Elivelton A. Ferreira, Thiago N. M. Cervantes, Lucio C. Almeida
{"title":"与亚甲基蓝阻抗检测同时进行的二氧化钛纳米管自掺杂的合成、表征和机理研究","authors":"Pablo C. Soto,&nbsp;João V. Martins,&nbsp;Gabrielle Sarto,&nbsp;Maiara M. Slonski,&nbsp;Helder S. Anizelli,&nbsp;Elivelton A. Ferreira,&nbsp;Thiago N. M. Cervantes,&nbsp;Lucio C. Almeida","doi":"10.1007/s10008-024-06027-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports that the self-doped TiO<sub>2</sub> nanotubes (SD–TNT) electrode obtained by cathodic polarization promotes a significant decrease in the band gap value and an increase in electrode conductivity, due to the formation of Ti<sup>3+</sup> sites and oxygen vacancies. A mechanism for the electrochemical self-doping of TNT electrode and its potential applicability as an impedimetric sensing platform for the target molecule methylene blue (MB) dye was proposed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies made it possible to determine that the charge transfer process in the self-doping process is associated with the stability of H<sup>+</sup> species. A 2<sup>2</sup> full factorial design (FFD) combined with response surface methodology (RSM) was employed to find the optimal operational conditions of the impedimetric sensor, which were equal to −1.4 V at pH 7.0. In this optimized condition, a linear relationship (<i>R</i><sup>2</sup> = 0.999) for the MB concentration range of 0.10 to 1.75 mg L<sup>−1</sup> as a function of the charge transfer resistance (<i>R</i><sub>ct</sub>) was found. Finally, it was possible to correlate the self-doping process of TNT with the impedimetric behavior, indicating that this system can be used for other cationic compounds of interest.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 3","pages":"1035 - 1048"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and mechanistic study involved in the self-doping of TiO2 nanotubes simultaneously to the impedimetric detection of methylene blue\",\"authors\":\"Pablo C. Soto,&nbsp;João V. Martins,&nbsp;Gabrielle Sarto,&nbsp;Maiara M. Slonski,&nbsp;Helder S. Anizelli,&nbsp;Elivelton A. Ferreira,&nbsp;Thiago N. M. Cervantes,&nbsp;Lucio C. Almeida\",\"doi\":\"10.1007/s10008-024-06027-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports that the self-doped TiO<sub>2</sub> nanotubes (SD–TNT) electrode obtained by cathodic polarization promotes a significant decrease in the band gap value and an increase in electrode conductivity, due to the formation of Ti<sup>3+</sup> sites and oxygen vacancies. A mechanism for the electrochemical self-doping of TNT electrode and its potential applicability as an impedimetric sensing platform for the target molecule methylene blue (MB) dye was proposed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies made it possible to determine that the charge transfer process in the self-doping process is associated with the stability of H<sup>+</sup> species. A 2<sup>2</sup> full factorial design (FFD) combined with response surface methodology (RSM) was employed to find the optimal operational conditions of the impedimetric sensor, which were equal to −1.4 V at pH 7.0. In this optimized condition, a linear relationship (<i>R</i><sup>2</sup> = 0.999) for the MB concentration range of 0.10 to 1.75 mg L<sup>−1</sup> as a function of the charge transfer resistance (<i>R</i><sub>ct</sub>) was found. Finally, it was possible to correlate the self-doping process of TNT with the impedimetric behavior, indicating that this system can be used for other cationic compounds of interest.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"29 3\",\"pages\":\"1035 - 1048\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06027-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06027-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, characterization, and mechanistic study involved in the self-doping of TiO2 nanotubes simultaneously to the impedimetric detection of methylene blue

This paper reports that the self-doped TiO2 nanotubes (SD–TNT) electrode obtained by cathodic polarization promotes a significant decrease in the band gap value and an increase in electrode conductivity, due to the formation of Ti3+ sites and oxygen vacancies. A mechanism for the electrochemical self-doping of TNT electrode and its potential applicability as an impedimetric sensing platform for the target molecule methylene blue (MB) dye was proposed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies made it possible to determine that the charge transfer process in the self-doping process is associated with the stability of H+ species. A 22 full factorial design (FFD) combined with response surface methodology (RSM) was employed to find the optimal operational conditions of the impedimetric sensor, which were equal to −1.4 V at pH 7.0. In this optimized condition, a linear relationship (R2 = 0.999) for the MB concentration range of 0.10 to 1.75 mg L−1 as a function of the charge transfer resistance (Rct) was found. Finally, it was possible to correlate the self-doping process of TNT with the impedimetric behavior, indicating that this system can be used for other cationic compounds of interest.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
4.00%
发文量
227
审稿时长
4.1 months
期刊介绍: The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry. The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces. The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis. The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.
期刊最新文献
Jan 2025 editorial XXIV Brazilian Symposium of Electrochemistry and Electroanalysis (XXIV SIBEE — Simpósio Brasileiro de Eletroquímica e Eletroanalítica) — Porto Alegre, Rio Grande do Sul, Brazil Optimization of growth condition of n-type Bi2O3 semiconductors for improved photoelectrochemical applications Decentralized and cost-effective colorimetry analysis by smartphone-based method digital image for monitoring electrochemical elimination of dye from water matrices Optimizing laser-induced graphene oxide electrodes for electroanalytical applications using response surface methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1