{"title":"用于领土风险软聚类分析的非负稀疏矩阵因式分解","authors":"Shengkun Xie, Chong Gan, Anna T. Lawniczak","doi":"10.1007/s40745-024-00570-z","DOIUrl":null,"url":null,"abstract":"<div><p>Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"307 - 340"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis\",\"authors\":\"Shengkun Xie, Chong Gan, Anna T. Lawniczak\",\"doi\":\"10.1007/s40745-024-00570-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":\"12 1\",\"pages\":\"307 - 340\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00570-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00570-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Non-negative Sparse Matrix Factorization for Soft Clustering of Territory Risk Analysis
Developing effective methodologies for territory design and relativity estimation is crucial in auto insurance rate filings and reviews. This study introduces a novel approach utilizing fuzzy clustering to enhance the design process of territories for auto insurance rate-making and regulation. By adopting a soft clustering method, we aim to overcome the limitations of traditional hard clustering techniques and improve the assessment of territory risk. Furthermore, we employ non-negative sparse matrix approximation techniques to refine the estimates of risk relativities for basic rating units. This method promotes sparsity in the fuzzy membership matrix by eliminating small membership values, leading to more robust and interpretable results. We also compare the outcomes with those obtained using non-negative sparse principal component analysis, a technique explored in our previous research. Integrating fuzzy clustering with non-negative sparse matrix decomposition offers a promising approach for auto insurance rate filings. The combined methodology enhances decision-making and provides sparse estimates, which can be advantageous in various data science applications where fuzzy clustering is relevant.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.