Hawkar A. Abdulhaq, János Geiger, István Vass, T. Tóth, Tamás Medgyes, János Szanyi
{"title":"将废弃油气田转化为储热解决方案:利用增强型多标准决策分析--层次分析法和地质统计方法进行的匈牙利案例研究","authors":"Hawkar A. Abdulhaq, János Geiger, István Vass, T. Tóth, Tamás Medgyes, János Szanyi","doi":"10.3390/en17163954","DOIUrl":null,"url":null,"abstract":"This study introduces a robust methodology utilizing Multi-Criteria Decision Analysis (MCDA) combined with an Analytic Hierarchy Process (AHP) to repurpose abandoned hydrocarbon fields for energy storage, supporting the transition to renewable energy sources. We use a geostatistical approach integrated with Python scripting to analyze reservoir parameters—including porosity, permeability, thickness, lithology, temperature, heat capacity, and thermal conductivity—from a decommissioned hydrocarbon field in Southeast Hungary. Our workflow leverages stochastic simulation data to identify potential zones for energy storage, categorizing them into high-, moderate-, and low-suitability scenarios. This innovative approach provides rapid and precise analysis, enabling effective decision-making for energy storage implementation in depleted fields. The key finding is the development of a methodology that can quickly and accurately assess the feasibility of repurposing abandoned hydrocarbon reservoirs for underground thermal energy storage, offering a practical solution for sustainable energy transition.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods\",\"authors\":\"Hawkar A. Abdulhaq, János Geiger, István Vass, T. Tóth, Tamás Medgyes, János Szanyi\",\"doi\":\"10.3390/en17163954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a robust methodology utilizing Multi-Criteria Decision Analysis (MCDA) combined with an Analytic Hierarchy Process (AHP) to repurpose abandoned hydrocarbon fields for energy storage, supporting the transition to renewable energy sources. We use a geostatistical approach integrated with Python scripting to analyze reservoir parameters—including porosity, permeability, thickness, lithology, temperature, heat capacity, and thermal conductivity—from a decommissioned hydrocarbon field in Southeast Hungary. Our workflow leverages stochastic simulation data to identify potential zones for energy storage, categorizing them into high-, moderate-, and low-suitability scenarios. This innovative approach provides rapid and precise analysis, enabling effective decision-making for energy storage implementation in depleted fields. The key finding is the development of a methodology that can quickly and accurately assess the feasibility of repurposing abandoned hydrocarbon reservoirs for underground thermal energy storage, offering a practical solution for sustainable energy transition.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17163954\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163954","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods
This study introduces a robust methodology utilizing Multi-Criteria Decision Analysis (MCDA) combined with an Analytic Hierarchy Process (AHP) to repurpose abandoned hydrocarbon fields for energy storage, supporting the transition to renewable energy sources. We use a geostatistical approach integrated with Python scripting to analyze reservoir parameters—including porosity, permeability, thickness, lithology, temperature, heat capacity, and thermal conductivity—from a decommissioned hydrocarbon field in Southeast Hungary. Our workflow leverages stochastic simulation data to identify potential zones for energy storage, categorizing them into high-, moderate-, and low-suitability scenarios. This innovative approach provides rapid and precise analysis, enabling effective decision-making for energy storage implementation in depleted fields. The key finding is the development of a methodology that can quickly and accurately assess the feasibility of repurposing abandoned hydrocarbon reservoirs for underground thermal energy storage, offering a practical solution for sustainable energy transition.
期刊介绍:
Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.