Florin Nicolae Blaga, Alexandru Stefan Nutiu, Alex Octavian Lupsa, Nicu Adrian Ghiurau, S. Vlad, T. Ghitea
{"title":"探索富血小板血浆疗法治疗膝骨关节炎:深入分析","authors":"Florin Nicolae Blaga, Alexandru Stefan Nutiu, Alex Octavian Lupsa, Nicu Adrian Ghiurau, S. Vlad, T. Ghitea","doi":"10.3390/jfb15080221","DOIUrl":null,"url":null,"abstract":"The use of platelet-rich plasma (PRP) in all medical fields is currently gaining popularity (1). PRP is a biological product that can be defined as a segment of the plasma fraction of autologous blood with a platelet concentration level above the baseline (2). The fact that it has uses in tissue regeneration and wound healing has caught the eye of orthopedic surgeons as well, as intra-articular treatments have continued to evolve. Its benefits in the treatment of different osteoarticular pathologies are of great interest in the evolving orthopedic community, targeting mostly knee osteoarthritis, meniscus and ligament injuries (3). The purpose of this review is to update the reader on the current uses of platelet-rich plasma (PRP) in the treatment of knee osteoarthritis pathology and to provide clinical feedback on its uses in the fields of orthopedic and sports medicine practice (4). We proceeded in studying 180 titles and abstracts eligible for inclusion. Compared to alternative treatments, PRP injections greatly improve the function of the knee joint.","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Platelet-Rich Plasma Therapy for Knee Osteoarthritis: An In-Depth Analysis\",\"authors\":\"Florin Nicolae Blaga, Alexandru Stefan Nutiu, Alex Octavian Lupsa, Nicu Adrian Ghiurau, S. Vlad, T. Ghitea\",\"doi\":\"10.3390/jfb15080221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of platelet-rich plasma (PRP) in all medical fields is currently gaining popularity (1). PRP is a biological product that can be defined as a segment of the plasma fraction of autologous blood with a platelet concentration level above the baseline (2). The fact that it has uses in tissue regeneration and wound healing has caught the eye of orthopedic surgeons as well, as intra-articular treatments have continued to evolve. Its benefits in the treatment of different osteoarticular pathologies are of great interest in the evolving orthopedic community, targeting mostly knee osteoarthritis, meniscus and ligament injuries (3). The purpose of this review is to update the reader on the current uses of platelet-rich plasma (PRP) in the treatment of knee osteoarthritis pathology and to provide clinical feedback on its uses in the fields of orthopedic and sports medicine practice (4). We proceeded in studying 180 titles and abstracts eligible for inclusion. Compared to alternative treatments, PRP injections greatly improve the function of the knee joint.\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb15080221\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15080221","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Exploring Platelet-Rich Plasma Therapy for Knee Osteoarthritis: An In-Depth Analysis
The use of platelet-rich plasma (PRP) in all medical fields is currently gaining popularity (1). PRP is a biological product that can be defined as a segment of the plasma fraction of autologous blood with a platelet concentration level above the baseline (2). The fact that it has uses in tissue regeneration and wound healing has caught the eye of orthopedic surgeons as well, as intra-articular treatments have continued to evolve. Its benefits in the treatment of different osteoarticular pathologies are of great interest in the evolving orthopedic community, targeting mostly knee osteoarthritis, meniscus and ligament injuries (3). The purpose of this review is to update the reader on the current uses of platelet-rich plasma (PRP) in the treatment of knee osteoarthritis pathology and to provide clinical feedback on its uses in the fields of orthopedic and sports medicine practice (4). We proceeded in studying 180 titles and abstracts eligible for inclusion. Compared to alternative treatments, PRP injections greatly improve the function of the knee joint.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.