I. Manole, A. Butacu, Raluca Nicoleta Bejan, G. Tiplica
{"title":"利用 EfficientNet 增强皮肤病诊断能力:深度学习方法","authors":"I. Manole, A. Butacu, Raluca Nicoleta Bejan, G. Tiplica","doi":"10.3390/bioengineering11080810","DOIUrl":null,"url":null,"abstract":"Background: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. Methods: Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors’ collection and the ISIC 2019 archive, covering six dermatological conditions. Results: The model achieved 95.4% validation accuracy in four categories—melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi—using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)—squamous cell carcinoma and actinic keratoses—reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. Conclusions: The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Dermatological Diagnostics with EfficientNet: A Deep Learning Approach\",\"authors\":\"I. Manole, A. Butacu, Raluca Nicoleta Bejan, G. Tiplica\",\"doi\":\"10.3390/bioengineering11080810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. Methods: Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors’ collection and the ISIC 2019 archive, covering six dermatological conditions. Results: The model achieved 95.4% validation accuracy in four categories—melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi—using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)—squamous cell carcinoma and actinic keratoses—reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. Conclusions: The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080810\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080810","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing Dermatological Diagnostics with EfficientNet: A Deep Learning Approach
Background: Despite recent advancements, medical technology has not yet reached its peak. Precision medicine is growing rapidly, thanks to machine learning breakthroughs powered by increased computational capabilities. This article explores a deep learning application for computer-aided diagnosis in dermatology. Methods: Using a custom model based on EfficientNetB3 and deep learning, we propose an approach for skin lesion classification that offers superior results with smaller, cheaper, and faster inference times compared to other models. The skin images dataset used for this research includes 8222 files selected from the authors’ collection and the ISIC 2019 archive, covering six dermatological conditions. Results: The model achieved 95.4% validation accuracy in four categories—melanoma, basal cell carcinoma, benign keratosis-like lesions, and melanocytic nevi—using an average of 1600 images per category. Adding two categories with fewer images (about 700 each)—squamous cell carcinoma and actinic keratoses—reduced the validation accuracy to 88.8%. The model maintained accuracy on new clinical test images taken under the same conditions as the training dataset. Conclusions: The custom model demonstrated excellent performance on the diverse skin lesions dataset, with significant potential for further enhancements.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering