{"title":"PH-CBAM:用于面部表情识别的多特征提取并行混合 CBAM 网络","authors":"Liefa Liao, Shouluan Wu, Chao Song, Jianglong Fu","doi":"10.3390/electronics13163149","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks have made significant progress in human Facial Expression Recognition (FER). However, they still face challenges in effectively focusing on and extracting facial features. Recent research has turned to attention mechanisms to address this issue, focusing primarily on local feature details rather than overall facial features. Building upon the classical Convolutional Block Attention Module (CBAM), this paper introduces a novel Parallel Hybrid Attention Model, termed PH-CBAM. This model employs split-channel attention to enhance the extraction of key features while maintaining a minimal parameter count. The proposed model enables the network to emphasize relevant details during expression classification. Heatmap analysis demonstrates that PH-CBAM effectively highlights key facial information. By employing a multimodal extraction approach in the initial image feature extraction phase, the network structure captures various facial features. The algorithm integrates a residual network and the MISH activation function to create a multi-feature extraction network, addressing issues such as gradient vanishing and negative gradient zero point in residual transmission. This enhances the retention of valuable information and facilitates information flow between key image details and target images. Evaluation on benchmark datasets FER2013, CK+, and Bigfer2013 yielded accuracies of 68.82%, 97.13%, and 72.31%, respectively. Comparison with mainstream network models on FER2013 and CK+ datasets demonstrates the efficiency of the PH-CBAM model, with comparable accuracy to current advanced models, showcasing its effectiveness in emotion detection.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"37 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PH-CBAM: A Parallel Hybrid CBAM Network with Multi-Feature Extraction for Facial Expression Recognition\",\"authors\":\"Liefa Liao, Shouluan Wu, Chao Song, Jianglong Fu\",\"doi\":\"10.3390/electronics13163149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks have made significant progress in human Facial Expression Recognition (FER). However, they still face challenges in effectively focusing on and extracting facial features. Recent research has turned to attention mechanisms to address this issue, focusing primarily on local feature details rather than overall facial features. Building upon the classical Convolutional Block Attention Module (CBAM), this paper introduces a novel Parallel Hybrid Attention Model, termed PH-CBAM. This model employs split-channel attention to enhance the extraction of key features while maintaining a minimal parameter count. The proposed model enables the network to emphasize relevant details during expression classification. Heatmap analysis demonstrates that PH-CBAM effectively highlights key facial information. By employing a multimodal extraction approach in the initial image feature extraction phase, the network structure captures various facial features. The algorithm integrates a residual network and the MISH activation function to create a multi-feature extraction network, addressing issues such as gradient vanishing and negative gradient zero point in residual transmission. This enhances the retention of valuable information and facilitates information flow between key image details and target images. Evaluation on benchmark datasets FER2013, CK+, and Bigfer2013 yielded accuracies of 68.82%, 97.13%, and 72.31%, respectively. Comparison with mainstream network models on FER2013 and CK+ datasets demonstrates the efficiency of the PH-CBAM model, with comparable accuracy to current advanced models, showcasing its effectiveness in emotion detection.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\"37 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13163149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13163149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PH-CBAM: A Parallel Hybrid CBAM Network with Multi-Feature Extraction for Facial Expression Recognition
Convolutional neural networks have made significant progress in human Facial Expression Recognition (FER). However, they still face challenges in effectively focusing on and extracting facial features. Recent research has turned to attention mechanisms to address this issue, focusing primarily on local feature details rather than overall facial features. Building upon the classical Convolutional Block Attention Module (CBAM), this paper introduces a novel Parallel Hybrid Attention Model, termed PH-CBAM. This model employs split-channel attention to enhance the extraction of key features while maintaining a minimal parameter count. The proposed model enables the network to emphasize relevant details during expression classification. Heatmap analysis demonstrates that PH-CBAM effectively highlights key facial information. By employing a multimodal extraction approach in the initial image feature extraction phase, the network structure captures various facial features. The algorithm integrates a residual network and the MISH activation function to create a multi-feature extraction network, addressing issues such as gradient vanishing and negative gradient zero point in residual transmission. This enhances the retention of valuable information and facilitates information flow between key image details and target images. Evaluation on benchmark datasets FER2013, CK+, and Bigfer2013 yielded accuracies of 68.82%, 97.13%, and 72.31%, respectively. Comparison with mainstream network models on FER2013 and CK+ datasets demonstrates the efficiency of the PH-CBAM model, with comparable accuracy to current advanced models, showcasing its effectiveness in emotion detection.