通过在地面实验室模拟空间冷却条件测量电气热电发生器的电气性能

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS Energy technology Pub Date : 2024-08-09 DOI:10.1002/ente.202400273
Xuejian Wang, Hu He, Yurou Sang, Lu Han, Jialin Gu, Congshuai Cao
{"title":"通过在地面实验室模拟空间冷却条件测量电气热电发生器的电气性能","authors":"Xuejian Wang,&nbsp;Hu He,&nbsp;Yurou Sang,&nbsp;Lu Han,&nbsp;Jialin Gu,&nbsp;Congshuai Cao","doi":"10.1002/ente.202400273","DOIUrl":null,"url":null,"abstract":"<p>Predicting the electrical performance and temperature field of radioisotope thermoelectric generator (RTG) is crucial and essential before they are used in space, a common application scenario. However, building a laboratory to recreate a space environment is expensive and time-consuming. It is also unrealistic to deploy temperature measurement probes in various components of the RTG. This article aims to establish an approach which combines finite element method (FEM) and experimental measurements in the terrestrial laboratory to solve the problem more effectively: first, using FEM to calculate the temperature distribution of RTG operating in the space; second, realizing the similar temperature distribution of self-assembly RTG prototype (electrical thermoelectric generator [ETG]) in the terrestrial laboratory by air cooling. The subsequent measurements of electrical performance indicate that the ETG exhibits a maximum power output of 43.41 W and a maximum thermoelectric conversion efficiency of 5.788% in the simulated space environment, aligning well with the values obtained from FEM. This research has the potential to serve as a method for forecasting the performance of RTG in a terrestrial laboratory.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Performance Measurement of Electrical Thermoelectric Generator by Simulating Space Cooling Conditions in Terrestrial Laboratory\",\"authors\":\"Xuejian Wang,&nbsp;Hu He,&nbsp;Yurou Sang,&nbsp;Lu Han,&nbsp;Jialin Gu,&nbsp;Congshuai Cao\",\"doi\":\"10.1002/ente.202400273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting the electrical performance and temperature field of radioisotope thermoelectric generator (RTG) is crucial and essential before they are used in space, a common application scenario. However, building a laboratory to recreate a space environment is expensive and time-consuming. It is also unrealistic to deploy temperature measurement probes in various components of the RTG. This article aims to establish an approach which combines finite element method (FEM) and experimental measurements in the terrestrial laboratory to solve the problem more effectively: first, using FEM to calculate the temperature distribution of RTG operating in the space; second, realizing the similar temperature distribution of self-assembly RTG prototype (electrical thermoelectric generator [ETG]) in the terrestrial laboratory by air cooling. The subsequent measurements of electrical performance indicate that the ETG exhibits a maximum power output of 43.41 W and a maximum thermoelectric conversion efficiency of 5.788% in the simulated space environment, aligning well with the values obtained from FEM. This research has the potential to serve as a method for forecasting the performance of RTG in a terrestrial laboratory.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400273\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400273","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

预测放射性同位素热电发生器(RTG)的电气性能和温度场是将其用于太空(一种常见的应用场景)之前的关键和必要条件。然而,建造一个重现太空环境的实验室既昂贵又耗时。在 RTG 的各个组件中部署温度测量探头也不现实。本文旨在建立一种结合有限元法(FEM)和地面实验室实验测量的方法,以更有效地解决这一问题:首先,利用有限元法计算 RTG 在太空中运行的温度分布;其次,在地面实验室通过空气冷却实现自组装 RTG 原型(电热电发生器 [ETG])的类似温度分布。随后的电性能测量结果表明,ETG 在模拟空间环境中的最大输出功率为 43.41 W,最大热电转换效率为 5.788%,与有限元计算得出的数值非常吻合。这项研究有望成为预测地面实验室 RTG 性能的一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical Performance Measurement of Electrical Thermoelectric Generator by Simulating Space Cooling Conditions in Terrestrial Laboratory

Predicting the electrical performance and temperature field of radioisotope thermoelectric generator (RTG) is crucial and essential before they are used in space, a common application scenario. However, building a laboratory to recreate a space environment is expensive and time-consuming. It is also unrealistic to deploy temperature measurement probes in various components of the RTG. This article aims to establish an approach which combines finite element method (FEM) and experimental measurements in the terrestrial laboratory to solve the problem more effectively: first, using FEM to calculate the temperature distribution of RTG operating in the space; second, realizing the similar temperature distribution of self-assembly RTG prototype (electrical thermoelectric generator [ETG]) in the terrestrial laboratory by air cooling. The subsequent measurements of electrical performance indicate that the ETG exhibits a maximum power output of 43.41 W and a maximum thermoelectric conversion efficiency of 5.788% in the simulated space environment, aligning well with the values obtained from FEM. This research has the potential to serve as a method for forecasting the performance of RTG in a terrestrial laboratory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
期刊最新文献
Cover Picture Masthead Simulation and Experimental Research on a New Symmetrical Hydraulic Piezoelectric Energy Harvester Theoretical Investigation on Carbazole Derivatives as Charge Carriers for Perovskite Solar Cell Ultrasmall Fe‐Nanoclusters‐Anchored Carbon Polyhedrons Interconnected with Carbon Nanotubes for High‐Performance Zinc‐Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1