二氧化碳管道运输的风险与安全:二氧化碳意外释放到大气中的风险分析与建模案例研究

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2024-08-09 DOI:10.3390/en17163943
Paweł Bielka, Szymon Kuczyński, T. Włodek, Stanisław Nagy
{"title":"二氧化碳管道运输的风险与安全:二氧化碳意外释放到大气中的风险分析与建模案例研究","authors":"Paweł Bielka, Szymon Kuczyński, T. Włodek, Stanisław Nagy","doi":"10.3390/en17163943","DOIUrl":null,"url":null,"abstract":"In the field of CO2 capture and sequestration, ensuring the safety of pipeline infrastructure is paramount to successful climate change mitigation efforts. This study investigates the dynamics of CO2 dispersion from pipeline systems, assessing not only the transport process but also the physical properties and associated hazards. Advanced simulation techniques are used to model how different states of CO2 (gas, liquid, and supercritical) and varying pipeline characteristics—such as perforation sizes, flow rates, and orientations—affect the dispersion patterns in the event of a leak. Simulations cover a range of atmospheric conditions, emphasizing the role of atmospheric stability and wind speed in shaping dispersion and defining potential impact zones. An analysis of historical pipeline accidents is included to inform risk management strategies. The results show that the orientation of the pipeline has a significant effect on dispersion, with downward leaks causing the largest impact zones, particularly under supercritical conditions. The results highlight the need for adaptive safety strategies that take into account real-time CO2 transport conditions and localized environmental data. By integrating these factors, the study recommends refining safety protocols and emergency response strategies to improve pipeline resilience and public safety against potential leaks. Key findings include the quantification of the relationship between leak parameters and dispersion areas, providing a valuable framework for future safety improvements.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risks and Safety of CO2 Pipeline Transport: A Case Study of the Analysis and Modeling of the Risk of Accidental Release of CO2 into the Atmosphere\",\"authors\":\"Paweł Bielka, Szymon Kuczyński, T. Włodek, Stanisław Nagy\",\"doi\":\"10.3390/en17163943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of CO2 capture and sequestration, ensuring the safety of pipeline infrastructure is paramount to successful climate change mitigation efforts. This study investigates the dynamics of CO2 dispersion from pipeline systems, assessing not only the transport process but also the physical properties and associated hazards. Advanced simulation techniques are used to model how different states of CO2 (gas, liquid, and supercritical) and varying pipeline characteristics—such as perforation sizes, flow rates, and orientations—affect the dispersion patterns in the event of a leak. Simulations cover a range of atmospheric conditions, emphasizing the role of atmospheric stability and wind speed in shaping dispersion and defining potential impact zones. An analysis of historical pipeline accidents is included to inform risk management strategies. The results show that the orientation of the pipeline has a significant effect on dispersion, with downward leaks causing the largest impact zones, particularly under supercritical conditions. The results highlight the need for adaptive safety strategies that take into account real-time CO2 transport conditions and localized environmental data. By integrating these factors, the study recommends refining safety protocols and emergency response strategies to improve pipeline resilience and public safety against potential leaks. Key findings include the quantification of the relationship between leak parameters and dispersion areas, providing a valuable framework for future safety improvements.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17163943\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在二氧化碳捕集与封存领域,确保管道基础设施的安全对于成功减缓气候变化至关重要。本研究调查了二氧化碳从管道系统中扩散的动态,不仅评估了运输过程,还评估了物理性质和相关危害。研究采用先进的模拟技术来模拟不同状态的二氧化碳(气体、液体和超临界)以及不同的管道特征(如穿孔尺寸、流速和方向)如何在发生泄漏时影响扩散模式。模拟涵盖了一系列大气条件,强调了大气稳定性和风速在形成扩散和确定潜在影响区域方面的作用。其中还包括对历史管道事故的分析,以便为风险管理战略提供参考。结果表明,管道的方向对扩散有显著影响,向下泄漏会造成最大的影响区,尤其是在超临界条件下。研究结果突出表明,需要制定考虑到实时二氧化碳输送条件和本地环境数据的适应性安全策略。通过整合这些因素,该研究建议完善安全协议和应急响应策略,以提高管道的适应能力和公众安全,防止潜在泄漏。主要发现包括量化泄漏参数与扩散区域之间的关系,为未来的安全改进提供了宝贵的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risks and Safety of CO2 Pipeline Transport: A Case Study of the Analysis and Modeling of the Risk of Accidental Release of CO2 into the Atmosphere
In the field of CO2 capture and sequestration, ensuring the safety of pipeline infrastructure is paramount to successful climate change mitigation efforts. This study investigates the dynamics of CO2 dispersion from pipeline systems, assessing not only the transport process but also the physical properties and associated hazards. Advanced simulation techniques are used to model how different states of CO2 (gas, liquid, and supercritical) and varying pipeline characteristics—such as perforation sizes, flow rates, and orientations—affect the dispersion patterns in the event of a leak. Simulations cover a range of atmospheric conditions, emphasizing the role of atmospheric stability and wind speed in shaping dispersion and defining potential impact zones. An analysis of historical pipeline accidents is included to inform risk management strategies. The results show that the orientation of the pipeline has a significant effect on dispersion, with downward leaks causing the largest impact zones, particularly under supercritical conditions. The results highlight the need for adaptive safety strategies that take into account real-time CO2 transport conditions and localized environmental data. By integrating these factors, the study recommends refining safety protocols and emergency response strategies to improve pipeline resilience and public safety against potential leaks. Key findings include the quantification of the relationship between leak parameters and dispersion areas, providing a valuable framework for future safety improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries Optimal Configuration Method of Primary and Secondary Integrated Intelligent Switches in the Active Distribution Network Considering Comprehensive Fault Observability Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1