用于 RES 集成三区电力系统 LFC 的新型 ANFIS 控制器

Y. O. M. Sekyere, F. Effah, P. Okyere
{"title":"用于 RES 集成三区电力系统 LFC 的新型 ANFIS 控制器","authors":"Y. O. M. Sekyere, F. Effah, P. Okyere","doi":"10.37256/jeee.3220244886","DOIUrl":null,"url":null,"abstract":"This paper presents a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Load Frequency Control (LFC) with an expanded input configuration, incorporating the integral of the area control error (ACE) alongside the traditional ACE and its derivative. This additional input captures historical ACE trends, enhancing the ANFIS control performance. The ANFIS training dataset, comprising ACE error, its derivative, and integral, is generated using a PID controller tuned by a variant of Particle Swarm Optimization (PSO) algorithm called an Adaptive Dynamic Inertia Weight Acceleration Coefficient (ADIWACO). Its evaluation on a three-area power system with renewable energy sources (RES) includes comparative analysis with PID, traditional 2-input ANFIS, Fuzzy Logic, and Artificial Neural Network (ANN) controllers. Simulation results demonstrate the superior performance of the proposed 3-input ANFIS controller in terms of performance metrics, consisting of overshoot, undershoot, settling time, steady-state error, and Integral Time Absolute Error (ITAE). Notably, the proposed ANFIS model shows a significant 75.89% improvement in ITAE value over the traditional 2-input ANFIS when communication delays and governor dead band constraints are considered, underscoring the significant impact of the additional input. System parameters variation of ±25%, further confirms the controller's robustness to uncertain model parameters. This study contributes to advancing real-world application of ANFIS controllers for LFC in interconnected power systems integrated with the two most widely developed renewable resources, namely solar and wind power plants.","PeriodicalId":518396,"journal":{"name":"Journal of Electronics and Electrical Engineering","volume":"21 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel ANFIS Controller for LFC in RES Integrated Three-Area Power System\",\"authors\":\"Y. O. M. Sekyere, F. Effah, P. Okyere\",\"doi\":\"10.37256/jeee.3220244886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Load Frequency Control (LFC) with an expanded input configuration, incorporating the integral of the area control error (ACE) alongside the traditional ACE and its derivative. This additional input captures historical ACE trends, enhancing the ANFIS control performance. The ANFIS training dataset, comprising ACE error, its derivative, and integral, is generated using a PID controller tuned by a variant of Particle Swarm Optimization (PSO) algorithm called an Adaptive Dynamic Inertia Weight Acceleration Coefficient (ADIWACO). Its evaluation on a three-area power system with renewable energy sources (RES) includes comparative analysis with PID, traditional 2-input ANFIS, Fuzzy Logic, and Artificial Neural Network (ANN) controllers. Simulation results demonstrate the superior performance of the proposed 3-input ANFIS controller in terms of performance metrics, consisting of overshoot, undershoot, settling time, steady-state error, and Integral Time Absolute Error (ITAE). Notably, the proposed ANFIS model shows a significant 75.89% improvement in ITAE value over the traditional 2-input ANFIS when communication delays and governor dead band constraints are considered, underscoring the significant impact of the additional input. System parameters variation of ±25%, further confirms the controller's robustness to uncertain model parameters. This study contributes to advancing real-world application of ANFIS controllers for LFC in interconnected power systems integrated with the two most widely developed renewable resources, namely solar and wind power plants.\",\"PeriodicalId\":518396,\"journal\":{\"name\":\"Journal of Electronics and Electrical Engineering\",\"volume\":\"21 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronics and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/jeee.3220244886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/jeee.3220244886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于负载频率控制(LFC)的新型自适应神经模糊推理系统(ANFIS)模型,该模型采用了扩展的输入配置,将区域控制误差(ACE)积分与传统的 ACE 及其导数结合在一起。这一附加输入可捕捉到 ACE 的历史趋势,从而提高 ANFIS 的控制性能。ANFIS 训练数据集由 ACE 误差、其导数和积分组成,使用 PID 控制器生成,该控制器通过一种名为 "自适应动态惯性加权加速系数"(ADIWACO)的变体粒子群优化(PSO)算法进行调整。该系统对三区可再生能源(RES)电力系统的评估包括与 PID、传统的 2 输入 ANFIS、模糊逻辑和人工神经网络(ANN)控制器的比较分析。仿真结果表明,就性能指标(包括过冲、欠冲、稳定时间、稳态误差和积分时间绝对误差 (ITAE))而言,所提出的 3 输入 ANFIS 控制器性能优越。值得注意的是,与传统的 2 输入 ANFIS 相比,当考虑到通信延迟和调速器死区限制时,所提出的 ANFIS 模型在 ITAE 值上有 75.89% 的显著改善,突出了额外输入的重要影响。系统参数变化率为 ±25%,进一步证实了控制器对不确定模型参数的鲁棒性。这项研究有助于推动 ANFIS 控制器在互联电力系统中的实际应用,该系统集成了两种最广泛开发的可再生资源,即太阳能发电厂和风力发电厂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel ANFIS Controller for LFC in RES Integrated Three-Area Power System
This paper presents a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Load Frequency Control (LFC) with an expanded input configuration, incorporating the integral of the area control error (ACE) alongside the traditional ACE and its derivative. This additional input captures historical ACE trends, enhancing the ANFIS control performance. The ANFIS training dataset, comprising ACE error, its derivative, and integral, is generated using a PID controller tuned by a variant of Particle Swarm Optimization (PSO) algorithm called an Adaptive Dynamic Inertia Weight Acceleration Coefficient (ADIWACO). Its evaluation on a three-area power system with renewable energy sources (RES) includes comparative analysis with PID, traditional 2-input ANFIS, Fuzzy Logic, and Artificial Neural Network (ANN) controllers. Simulation results demonstrate the superior performance of the proposed 3-input ANFIS controller in terms of performance metrics, consisting of overshoot, undershoot, settling time, steady-state error, and Integral Time Absolute Error (ITAE). Notably, the proposed ANFIS model shows a significant 75.89% improvement in ITAE value over the traditional 2-input ANFIS when communication delays and governor dead band constraints are considered, underscoring the significant impact of the additional input. System parameters variation of ±25%, further confirms the controller's robustness to uncertain model parameters. This study contributes to advancing real-world application of ANFIS controllers for LFC in interconnected power systems integrated with the two most widely developed renewable resources, namely solar and wind power plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel ANFIS Controller for LFC in RES Integrated Three-Area Power System Multi-Band Antennas for 4G, 5G FR1 and Wi-Fi 6E/7 Bands in Smartwatch Devices Enhanced Harmonic Suppression for a Miniaturized Hairpin-Line Bandpass Filter with Meander Spurline Modeling and Simulation of a Single-Phase Linear Multi-Winding Transformer in the d-q Frame Alzheimer's Patient Support System Based on IoT and ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1