一种新的半结构化专利文件实体关系提取方法

Liyuan Zhang, Xiangyu Sun, Xianghua Ma, Kaitao Hu
{"title":"一种新的半结构化专利文件实体关系提取方法","authors":"Liyuan Zhang, Xiangyu Sun, Xianghua Ma, Kaitao Hu","doi":"10.3390/electronics13163144","DOIUrl":null,"url":null,"abstract":"Aimed at mitigating the limitations of the existing document entity relation extraction methods, especially the complex information interaction between different entities in the document and the poor effect of entity relation classification, according to the semi-structured characteristics of patent document data, a patent document ontology model construction method based on hierarchical clustering and association rules was proposed to describe the entities and their relations in the patent document, dubbed as MPreA. Combined with statistical learning and deep learning algorithms, the pre-trained model of the attention mechanism was fused to realize the effective extraction of entity relations. The results of the numerical simulation show that, compared with the traditional methods, our proposed method has achieved significant improvement in solving the problem of insufficient contextual information, and provides a more effective solution for patent document entity relation extraction.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":"115 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Entity Relationship Extraction Method for Semi-Structured Patent Documents\",\"authors\":\"Liyuan Zhang, Xiangyu Sun, Xianghua Ma, Kaitao Hu\",\"doi\":\"10.3390/electronics13163144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aimed at mitigating the limitations of the existing document entity relation extraction methods, especially the complex information interaction between different entities in the document and the poor effect of entity relation classification, according to the semi-structured characteristics of patent document data, a patent document ontology model construction method based on hierarchical clustering and association rules was proposed to describe the entities and their relations in the patent document, dubbed as MPreA. Combined with statistical learning and deep learning algorithms, the pre-trained model of the attention mechanism was fused to realize the effective extraction of entity relations. The results of the numerical simulation show that, compared with the traditional methods, our proposed method has achieved significant improvement in solving the problem of insufficient contextual information, and provides a more effective solution for patent document entity relation extraction.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\"115 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13163144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13163144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了缓解现有文献实体关系抽取方法的局限性,尤其是文献中不同实体之间复杂的信息交互和实体关系分类效果不佳的问题,根据专利文献数据的半结构化特征,提出了一种基于分层聚类和关联规则的专利文献本体模型构建方法,用于描述专利文献中的实体及其关系,称为MPreA。结合统计学习和深度学习算法,融合注意力机制的预训练模型,实现了实体关系的有效提取。数值模拟结果表明,与传统方法相比,我们提出的方法在解决上下文信息不足的问题上取得了显著的改进,为专利文档实体关系提取提供了更有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Entity Relationship Extraction Method for Semi-Structured Patent Documents
Aimed at mitigating the limitations of the existing document entity relation extraction methods, especially the complex information interaction between different entities in the document and the poor effect of entity relation classification, according to the semi-structured characteristics of patent document data, a patent document ontology model construction method based on hierarchical clustering and association rules was proposed to describe the entities and their relations in the patent document, dubbed as MPreA. Combined with statistical learning and deep learning algorithms, the pre-trained model of the attention mechanism was fused to realize the effective extraction of entity relations. The results of the numerical simulation show that, compared with the traditional methods, our proposed method has achieved significant improvement in solving the problem of insufficient contextual information, and provides a more effective solution for patent document entity relation extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transformer-Based Spatiotemporal Graph Diffusion Convolution Network for Traffic Flow Forecasting Compact Walsh–Hadamard Transform-Driven S-Box Design for ASIC Implementations RETRACTED: Liu et al. Ground Risk Estimation of Unmanned Aerial Vehicles Based on Probability Approximation for Impact Positions with Multi-Uncertainties. Electronics 2023, 12, 829 The Use of TheraBracelet Upper Extremity Vibrotactile Stimulation in a Child with Cerebral Palsy—A Case Report Image Databases with Features Augmented with Singular-Point Shapes to Enhance Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1