利用数字孪生增强微电网控制在拒绝服务攻击下的网络物理复原力

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2024-08-08 DOI:10.3390/en17163927
Mahmoud S. Abdelrahman, Ibtissam Kharchouf, Hossam M. Hussein, Mustafa Esoofally, Osama A. Mohammed
{"title":"利用数字孪生增强微电网控制在拒绝服务攻击下的网络物理复原力","authors":"Mahmoud S. Abdelrahman, Ibtissam Kharchouf, Hossam M. Hussein, Mustafa Esoofally, Osama A. Mohammed","doi":"10.3390/en17163927","DOIUrl":null,"url":null,"abstract":"Microgrids (MGs) are the new paradigm of decentralized networks of renewable energy sources, loads, and storage devices that can operate independently or in coordination with the primary grid, incorporating significant flexibility and supply reliability. To increase reliability, traditional individual MGs can be replaced by networked microgrids (NMGs), which are more dependable. However, when it comes to operation and control, they also pose challenges for cyber security and communication reliability. Denial of service (DoS) is a common danger to DC microgrids with advanced controllers that rely on active information exchanges and has been recorded as the most frequent cause of cyber incidents. It can disrupt data transmission, leading to ineffective control and system instability. This paper proposes digital twin (DT) technology as an integrated solution, with new, advanced analytics technology using machine learning and artificial intelligence to provide simulation capabilities to predict and estimate future states. By twinning the cyber-physical dynamics of NMGs using data-driven models, DoS attacks targeting cyber-layer agents will be detected and mitigated. A long short-term memory (LSTM) model data-driven digital twin approach for DoS attack detection and mitigation is implemented, tested, and evaluated.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Cyber-Physical Resiliency of Microgrid Control under Denial-of-Service Attack with Digital Twins\",\"authors\":\"Mahmoud S. Abdelrahman, Ibtissam Kharchouf, Hossam M. Hussein, Mustafa Esoofally, Osama A. Mohammed\",\"doi\":\"10.3390/en17163927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microgrids (MGs) are the new paradigm of decentralized networks of renewable energy sources, loads, and storage devices that can operate independently or in coordination with the primary grid, incorporating significant flexibility and supply reliability. To increase reliability, traditional individual MGs can be replaced by networked microgrids (NMGs), which are more dependable. However, when it comes to operation and control, they also pose challenges for cyber security and communication reliability. Denial of service (DoS) is a common danger to DC microgrids with advanced controllers that rely on active information exchanges and has been recorded as the most frequent cause of cyber incidents. It can disrupt data transmission, leading to ineffective control and system instability. This paper proposes digital twin (DT) technology as an integrated solution, with new, advanced analytics technology using machine learning and artificial intelligence to provide simulation capabilities to predict and estimate future states. By twinning the cyber-physical dynamics of NMGs using data-driven models, DoS attacks targeting cyber-layer agents will be detected and mitigated. A long short-term memory (LSTM) model data-driven digital twin approach for DoS attack detection and mitigation is implemented, tested, and evaluated.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17163927\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163927","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

微电网(MGs)是由可再生能源、负载和存储设备组成的分散网络的新模式,可独立运行,也可与主电网协调运行,具有显著的灵活性和供电可靠性。为提高可靠性,传统的单个 MG 可由可靠性更高的联网微电网(NMG)取代。然而,在运行和控制方面,它们也对网络安全和通信可靠性提出了挑战。拒绝服务(DoS)是具有先进控制器的直流微电网(依赖于主动信息交换)的常见危险,已被记录为最常见的网络事件原因。它会破坏数据传输,导致无效控制和系统不稳定。本文提出将数字孪生(DT)技术作为一种集成解决方案,利用机器学习和人工智能的新型先进分析技术,提供预测和估计未来状态的模拟能力。通过使用数据驱动模型将 NMG 的网络物理动态孪生起来,可以检测和缓解针对网络层代理的 DoS 攻击。我们实施、测试和评估了一种用于检测和缓解 DoS 攻击的长短期记忆(LSTM)模型数据驱动数字孪生方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Cyber-Physical Resiliency of Microgrid Control under Denial-of-Service Attack with Digital Twins
Microgrids (MGs) are the new paradigm of decentralized networks of renewable energy sources, loads, and storage devices that can operate independently or in coordination with the primary grid, incorporating significant flexibility and supply reliability. To increase reliability, traditional individual MGs can be replaced by networked microgrids (NMGs), which are more dependable. However, when it comes to operation and control, they also pose challenges for cyber security and communication reliability. Denial of service (DoS) is a common danger to DC microgrids with advanced controllers that rely on active information exchanges and has been recorded as the most frequent cause of cyber incidents. It can disrupt data transmission, leading to ineffective control and system instability. This paper proposes digital twin (DT) technology as an integrated solution, with new, advanced analytics technology using machine learning and artificial intelligence to provide simulation capabilities to predict and estimate future states. By twinning the cyber-physical dynamics of NMGs using data-driven models, DoS attacks targeting cyber-layer agents will be detected and mitigated. A long short-term memory (LSTM) model data-driven digital twin approach for DoS attack detection and mitigation is implemented, tested, and evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries Optimal Configuration Method of Primary and Secondary Integrated Intelligent Switches in the Active Distribution Network Considering Comprehensive Fault Observability Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1