Yue-Han Lin, Ya-Qin Lin, Rong-Can Yang, Hong-Yu Liu
{"title":"在双耦合腔-磁子系统中实现单向量子转向和受控生成不对称三方纠缠","authors":"Yue-Han Lin, Ya-Qin Lin, Rong-Can Yang, Hong-Yu Liu","doi":"10.1002/qute.202400180","DOIUrl":null,"url":null,"abstract":"<p>Two cavity-magnon subsystems coupled via the two single-mode cavities mediated by a non-degenerate parametric down conversion and each cavity carrying a magnon confined in a Yttrium-iron-garnet sphere is proposed to study one-way quantum steering and asymmetric tripartite entanglement. The entanglement can be transferred from the two microwave cavities to the two separated magnon modes using magnetic dipole interaction. Different from previous schemes, the present study demonstrates efficient realization of controllable one-way quantum steering between two magnon modes through asymmetric frequency detunings of the two magnon modes. In addition, an asymmetric tripartite entanglement can also be achieved. Furthermore, the system exhibits robustness to temperatures up to 100 mK, providing a promising avenue for utilizing cavity magnonics systems in unidirectional transmission of quantum information.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of One-Way Quantum Steering and Controlled Generation of Asymmetric Tripartite Entanglement in Double Coupling Cavity-Magnonics Subsystems\",\"authors\":\"Yue-Han Lin, Ya-Qin Lin, Rong-Can Yang, Hong-Yu Liu\",\"doi\":\"10.1002/qute.202400180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two cavity-magnon subsystems coupled via the two single-mode cavities mediated by a non-degenerate parametric down conversion and each cavity carrying a magnon confined in a Yttrium-iron-garnet sphere is proposed to study one-way quantum steering and asymmetric tripartite entanglement. The entanglement can be transferred from the two microwave cavities to the two separated magnon modes using magnetic dipole interaction. Different from previous schemes, the present study demonstrates efficient realization of controllable one-way quantum steering between two magnon modes through asymmetric frequency detunings of the two magnon modes. In addition, an asymmetric tripartite entanglement can also be achieved. Furthermore, the system exhibits robustness to temperatures up to 100 mK, providing a promising avenue for utilizing cavity magnonics systems in unidirectional transmission of quantum information.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Implementation of One-Way Quantum Steering and Controlled Generation of Asymmetric Tripartite Entanglement in Double Coupling Cavity-Magnonics Subsystems
Two cavity-magnon subsystems coupled via the two single-mode cavities mediated by a non-degenerate parametric down conversion and each cavity carrying a magnon confined in a Yttrium-iron-garnet sphere is proposed to study one-way quantum steering and asymmetric tripartite entanglement. The entanglement can be transferred from the two microwave cavities to the two separated magnon modes using magnetic dipole interaction. Different from previous schemes, the present study demonstrates efficient realization of controllable one-way quantum steering between two magnon modes through asymmetric frequency detunings of the two magnon modes. In addition, an asymmetric tripartite entanglement can also be achieved. Furthermore, the system exhibits robustness to temperatures up to 100 mK, providing a promising avenue for utilizing cavity magnonics systems in unidirectional transmission of quantum information.