利用蜜獾和遗传算法实现部分遮阳下光伏最大功率跟踪的混合方法

IF 3 4区 工程技术 Q3 ENERGY & FUELS Energies Pub Date : 2024-08-08 DOI:10.3390/en17163935
Zhi-Kai Fan, Annisa Setianingrum, K. Lian, Suwarno Suwarno
{"title":"利用蜜獾和遗传算法实现部分遮阳下光伏最大功率跟踪的混合方法","authors":"Zhi-Kai Fan, Annisa Setianingrum, K. Lian, Suwarno Suwarno","doi":"10.3390/en17163935","DOIUrl":null,"url":null,"abstract":"This study presents a new approach for Maximum Power Point Tracking (MPPT) by combining the honey badger algorithm (HBA) with a Genetic Algorithm (GA). The integration aims to optimize photovoltaic (PV) system performance in partial shading conditions (PSCs). Initially, the HBA is utilized to explore extensively and identify potential solutions while avoiding local optima. If necessary, the GA is then employed to escape local optima through selection, crossover, and mutation operations. On average, this proposed method has a 40% improvement in tracking time and 0.77% in efficiency compared with the HBA. In a dynamic case, the proposed method achieves a 4.81% improvement compared to HBA.","PeriodicalId":11557,"journal":{"name":"Energies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Approach for Photovoltaic Maximum Power Tracking under Partial Shading Using Honey Badger and Genetic Algorithms\",\"authors\":\"Zhi-Kai Fan, Annisa Setianingrum, K. Lian, Suwarno Suwarno\",\"doi\":\"10.3390/en17163935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a new approach for Maximum Power Point Tracking (MPPT) by combining the honey badger algorithm (HBA) with a Genetic Algorithm (GA). The integration aims to optimize photovoltaic (PV) system performance in partial shading conditions (PSCs). Initially, the HBA is utilized to explore extensively and identify potential solutions while avoiding local optima. If necessary, the GA is then employed to escape local optima through selection, crossover, and mutation operations. On average, this proposed method has a 40% improvement in tracking time and 0.77% in efficiency compared with the HBA. In a dynamic case, the proposed method achieves a 4.81% improvement compared to HBA.\",\"PeriodicalId\":11557,\"journal\":{\"name\":\"Energies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/en17163935\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/en17163935","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合蜜獾算法(HBA)和遗传算法(GA)的最大功率点跟踪(MPPT)新方法。整合的目的是优化部分遮阳条件(PSCs)下的光伏(PV)系统性能。最初,HBA 用于广泛探索和识别潜在的解决方案,同时避免局部最优。必要时,再利用 GA 通过选择、交叉和突变操作来摆脱局部最优状态。平均而言,与 HBA 相比,该建议方法的跟踪时间缩短了 40%,效率提高了 0.77%。在动态情况下,建议的方法比 HBA 提高了 4.81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Approach for Photovoltaic Maximum Power Tracking under Partial Shading Using Honey Badger and Genetic Algorithms
This study presents a new approach for Maximum Power Point Tracking (MPPT) by combining the honey badger algorithm (HBA) with a Genetic Algorithm (GA). The integration aims to optimize photovoltaic (PV) system performance in partial shading conditions (PSCs). Initially, the HBA is utilized to explore extensively and identify potential solutions while avoiding local optima. If necessary, the GA is then employed to escape local optima through selection, crossover, and mutation operations. On average, this proposed method has a 40% improvement in tracking time and 0.77% in efficiency compared with the HBA. In a dynamic case, the proposed method achieves a 4.81% improvement compared to HBA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energies
Energies ENERGY & FUELS-
CiteScore
6.20
自引率
21.90%
发文量
8045
审稿时长
1.9 months
期刊介绍: Energies (ISSN 1996-1073) is an open access journal of related scientific research, technology development and policy and management studies. It publishes reviews, regular research papers, and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods Bibliometric Analysis of Multi-Criteria Decision-Making (MCDM) Methods in Environmental and Energy Engineering Using CiteSpace Software: Identification of Key Research Trends and Patterns of International Cooperation Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries Optimal Configuration Method of Primary and Secondary Integrated Intelligent Switches in the Active Distribution Network Considering Comprehensive Fault Observability Effect of Exhaust Gas Recirculation on Combustion Characteristics of Ultra-Low-Sulfur Diesel in Conventional and PPCI Regimes for a High-Compression-Ratio Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1