Can Hu, Congchao Bian, Ning Cao, Han Zhou, Bin Guo
{"title":"利用改进的视觉变换器循环广域网合成胃癌的高 b 值扩散加权成像","authors":"Can Hu, Congchao Bian, Ning Cao, Han Zhou, Bin Guo","doi":"10.3390/bioengineering11080805","DOIUrl":null,"url":null,"abstract":"Background: Diffusion-weighted imaging (DWI), a pivotal component of multiparametric magnetic resonance imaging (mpMRI), plays a pivotal role in the detection, diagnosis, and evaluation of gastric cancer. Despite its potential, DWI is often marred by substantial anatomical distortions and sensitivity artifacts, which can hinder its practical utility. Presently, enhancing DWI’s image quality necessitates reliance on cutting-edge hardware and extended scanning durations. The development of a rapid technique that optimally balances shortened acquisition time with improved image quality would have substantial clinical relevance. Objectives: This study aims to construct and evaluate the unsupervised learning framework called attention dual contrast vision transformer cyclegan (ADCVCGAN) for enhancing image quality and reducing scanning time in gastric DWI. Methods: The ADCVCGAN framework, proposed in this study, employs high b-value DWI (b = 1200 s/mm2) as a reference for generating synthetic b-value DWI (s-DWI) from acquired lower b-value DWI (a-DWI, b = 800 s/mm2). Specifically, ADCVCGAN incorporates an attention mechanism CBAM module into the CycleGAN generator to enhance feature extraction from the input a-DWI in both the channel and spatial dimensions. Subsequently, a vision transformer module, based on the U-net framework, is introduced to refine detailed features, aiming to produce s-DWI with image quality comparable to that of b-DWI. Finally, images from the source domain are added as negative samples to the discriminator, encouraging the discriminator to steer the generator towards synthesizing images distant from the source domain in the latent space, with the goal of generating more realistic s-DWI. The image quality of the s-DWI is quantitatively assessed using metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), mean squared error (MSE), weighted peak signal-to-noise ratio (WPSNR), and weighted mean squared error (WMSE). Subjective evaluations of different DWI images were conducted using the Wilcoxon signed-rank test. The reproducibility and consistency of b-ADC and s-ADC, calculated from b-DWI and s-DWI, respectively, were assessed using the intraclass correlation coefficient (ICC). A statistical significance level of p < 0.05 was considered. Results: The s-DWI generated by the unsupervised learning framework ADCVCGAN scored significantly higher than a-DWI in quantitative metrics such as PSNR, SSIM, FSIM, MSE, WPSNR, and WMSE, with statistical significance (p < 0.001). This performance is comparable to the optimal level achieved by the latest synthetic algorithms. Subjective scores for lesion visibility, image anatomical details, image distortion, and overall image quality were significantly higher for s-DWI and b-DWI compared to a-DWI (p < 0.001). At the same time, there was no significant difference between the scores of s-DWI and b-DWI (p > 0.05). The consistency of b-ADC and s-ADC readings was comparable among different readers (ICC: b-ADC 0.87–0.90; s-ADC 0.88–0.89, respectively). The repeatability of b-ADC and s-ADC readings by the same reader was also comparable (Reader1 ICC: b-ADC 0.85–0.86, s-ADC 0.85–0.93; Reader2 ICC: b-ADC 0.86–0.87, s-ADC 0.89–0.92, respectively). Conclusions: ADCVCGAN shows excellent promise in generating gastric cancer DWI images. It effectively reduces scanning time, improves image quality, and ensures the authenticity of s-DWI images and their s-ADC values, thus providing a basis for assisting clinical decision making.","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN\",\"authors\":\"Can Hu, Congchao Bian, Ning Cao, Han Zhou, Bin Guo\",\"doi\":\"10.3390/bioengineering11080805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Diffusion-weighted imaging (DWI), a pivotal component of multiparametric magnetic resonance imaging (mpMRI), plays a pivotal role in the detection, diagnosis, and evaluation of gastric cancer. Despite its potential, DWI is often marred by substantial anatomical distortions and sensitivity artifacts, which can hinder its practical utility. Presently, enhancing DWI’s image quality necessitates reliance on cutting-edge hardware and extended scanning durations. The development of a rapid technique that optimally balances shortened acquisition time with improved image quality would have substantial clinical relevance. Objectives: This study aims to construct and evaluate the unsupervised learning framework called attention dual contrast vision transformer cyclegan (ADCVCGAN) for enhancing image quality and reducing scanning time in gastric DWI. Methods: The ADCVCGAN framework, proposed in this study, employs high b-value DWI (b = 1200 s/mm2) as a reference for generating synthetic b-value DWI (s-DWI) from acquired lower b-value DWI (a-DWI, b = 800 s/mm2). Specifically, ADCVCGAN incorporates an attention mechanism CBAM module into the CycleGAN generator to enhance feature extraction from the input a-DWI in both the channel and spatial dimensions. Subsequently, a vision transformer module, based on the U-net framework, is introduced to refine detailed features, aiming to produce s-DWI with image quality comparable to that of b-DWI. Finally, images from the source domain are added as negative samples to the discriminator, encouraging the discriminator to steer the generator towards synthesizing images distant from the source domain in the latent space, with the goal of generating more realistic s-DWI. The image quality of the s-DWI is quantitatively assessed using metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), mean squared error (MSE), weighted peak signal-to-noise ratio (WPSNR), and weighted mean squared error (WMSE). Subjective evaluations of different DWI images were conducted using the Wilcoxon signed-rank test. The reproducibility and consistency of b-ADC and s-ADC, calculated from b-DWI and s-DWI, respectively, were assessed using the intraclass correlation coefficient (ICC). A statistical significance level of p < 0.05 was considered. Results: The s-DWI generated by the unsupervised learning framework ADCVCGAN scored significantly higher than a-DWI in quantitative metrics such as PSNR, SSIM, FSIM, MSE, WPSNR, and WMSE, with statistical significance (p < 0.001). This performance is comparable to the optimal level achieved by the latest synthetic algorithms. Subjective scores for lesion visibility, image anatomical details, image distortion, and overall image quality were significantly higher for s-DWI and b-DWI compared to a-DWI (p < 0.001). At the same time, there was no significant difference between the scores of s-DWI and b-DWI (p > 0.05). The consistency of b-ADC and s-ADC readings was comparable among different readers (ICC: b-ADC 0.87–0.90; s-ADC 0.88–0.89, respectively). The repeatability of b-ADC and s-ADC readings by the same reader was also comparable (Reader1 ICC: b-ADC 0.85–0.86, s-ADC 0.85–0.93; Reader2 ICC: b-ADC 0.86–0.87, s-ADC 0.89–0.92, respectively). Conclusions: ADCVCGAN shows excellent promise in generating gastric cancer DWI images. It effectively reduces scanning time, improves image quality, and ensures the authenticity of s-DWI images and their s-ADC values, thus providing a basis for assisting clinical decision making.\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080805\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080805","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthesizing High b-Value Diffusion-Weighted Imaging of Gastric Cancer Using an Improved Vision Transformer CycleGAN
Background: Diffusion-weighted imaging (DWI), a pivotal component of multiparametric magnetic resonance imaging (mpMRI), plays a pivotal role in the detection, diagnosis, and evaluation of gastric cancer. Despite its potential, DWI is often marred by substantial anatomical distortions and sensitivity artifacts, which can hinder its practical utility. Presently, enhancing DWI’s image quality necessitates reliance on cutting-edge hardware and extended scanning durations. The development of a rapid technique that optimally balances shortened acquisition time with improved image quality would have substantial clinical relevance. Objectives: This study aims to construct and evaluate the unsupervised learning framework called attention dual contrast vision transformer cyclegan (ADCVCGAN) for enhancing image quality and reducing scanning time in gastric DWI. Methods: The ADCVCGAN framework, proposed in this study, employs high b-value DWI (b = 1200 s/mm2) as a reference for generating synthetic b-value DWI (s-DWI) from acquired lower b-value DWI (a-DWI, b = 800 s/mm2). Specifically, ADCVCGAN incorporates an attention mechanism CBAM module into the CycleGAN generator to enhance feature extraction from the input a-DWI in both the channel and spatial dimensions. Subsequently, a vision transformer module, based on the U-net framework, is introduced to refine detailed features, aiming to produce s-DWI with image quality comparable to that of b-DWI. Finally, images from the source domain are added as negative samples to the discriminator, encouraging the discriminator to steer the generator towards synthesizing images distant from the source domain in the latent space, with the goal of generating more realistic s-DWI. The image quality of the s-DWI is quantitatively assessed using metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), mean squared error (MSE), weighted peak signal-to-noise ratio (WPSNR), and weighted mean squared error (WMSE). Subjective evaluations of different DWI images were conducted using the Wilcoxon signed-rank test. The reproducibility and consistency of b-ADC and s-ADC, calculated from b-DWI and s-DWI, respectively, were assessed using the intraclass correlation coefficient (ICC). A statistical significance level of p < 0.05 was considered. Results: The s-DWI generated by the unsupervised learning framework ADCVCGAN scored significantly higher than a-DWI in quantitative metrics such as PSNR, SSIM, FSIM, MSE, WPSNR, and WMSE, with statistical significance (p < 0.001). This performance is comparable to the optimal level achieved by the latest synthetic algorithms. Subjective scores for lesion visibility, image anatomical details, image distortion, and overall image quality were significantly higher for s-DWI and b-DWI compared to a-DWI (p < 0.001). At the same time, there was no significant difference between the scores of s-DWI and b-DWI (p > 0.05). The consistency of b-ADC and s-ADC readings was comparable among different readers (ICC: b-ADC 0.87–0.90; s-ADC 0.88–0.89, respectively). The repeatability of b-ADC and s-ADC readings by the same reader was also comparable (Reader1 ICC: b-ADC 0.85–0.86, s-ADC 0.85–0.93; Reader2 ICC: b-ADC 0.86–0.87, s-ADC 0.89–0.92, respectively). Conclusions: ADCVCGAN shows excellent promise in generating gastric cancer DWI images. It effectively reduces scanning time, improves image quality, and ensures the authenticity of s-DWI images and their s-ADC values, thus providing a basis for assisting clinical decision making.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering