求助PDF
{"title":"基于 CFD 模拟的二氧化碳管道运输法兰泄漏扩散与安全评估","authors":"Weiqiu Huang, Yilan Xiao, Xufei Li, Zhou Ning","doi":"10.1002/ghg.2301","DOIUrl":null,"url":null,"abstract":"<p>Carbon capture and storage technologies play crucial roles in mitigating atmospheric greenhouse gases (GHGs). Pipeline transportation is the primary method of CO<sub>2</sub> transportation, making pipeline safety a priority. In this study, Fluent software was used to create a model for annular edge leakage flanges, which significantly differs from the traditional pinhole leakage model. This study aims to examine the impact of CO<sub>2</sub> pipeline flow and pressure on the diffusion of gas leaking from the flange and to develop a precise correlation between the diffusion distance and substance concentration. The results indicate that an increase in flow and pressure intensifies the diffusion of the flange leakage. Specifically, for a leakage lasting 96 s at flow rates of 0.7 and 10 m<sup>3</sup>/h, the diffusion ranges for the 5% concentration alarm threshold are 0.47 and 2.86 m, respectively. Furthermore, at a speed of 10 m/s and a pressure of 0.4 MPa, the diffusion ranges for 5 and 2% alarms are similar, spanning from 0.33 to 0.35 m. This study provides theoretical support and technical improvements to ensure the safe operation of pipelines. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 5","pages":"728-742"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leakage diffusion and safety assessment of CO2 pipeline transportation flange based on CFD simulation\",\"authors\":\"Weiqiu Huang, Yilan Xiao, Xufei Li, Zhou Ning\",\"doi\":\"10.1002/ghg.2301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon capture and storage technologies play crucial roles in mitigating atmospheric greenhouse gases (GHGs). Pipeline transportation is the primary method of CO<sub>2</sub> transportation, making pipeline safety a priority. In this study, Fluent software was used to create a model for annular edge leakage flanges, which significantly differs from the traditional pinhole leakage model. This study aims to examine the impact of CO<sub>2</sub> pipeline flow and pressure on the diffusion of gas leaking from the flange and to develop a precise correlation between the diffusion distance and substance concentration. The results indicate that an increase in flow and pressure intensifies the diffusion of the flange leakage. Specifically, for a leakage lasting 96 s at flow rates of 0.7 and 10 m<sup>3</sup>/h, the diffusion ranges for the 5% concentration alarm threshold are 0.47 and 2.86 m, respectively. Furthermore, at a speed of 10 m/s and a pressure of 0.4 MPa, the diffusion ranges for 5 and 2% alarms are similar, spanning from 0.33 to 0.35 m. This study provides theoretical support and technical improvements to ensure the safe operation of pipelines. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.</p>\",\"PeriodicalId\":12796,\"journal\":{\"name\":\"Greenhouse Gases: Science and Technology\",\"volume\":\"14 5\",\"pages\":\"728-742\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Greenhouse Gases: Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2301\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2301","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
引用
批量引用