{"title":"孔隙率对 YSZ 涂层耐磨性的影响","authors":"Dan Guo, Xiaolei Hu, Jianming Liu, Tong Liu","doi":"10.1007/s11666-024-01825-0","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of porosity on the wear behavior of YSZ abradable coating under simulated working conditions was studied using the high-temperature and ultra-high-speed abradability test rig. The results show that the porosity significantly influences the macroscopic morphology and abradability of the YSZ coating at the experimental temperatures of 1000 °C, with the blade tip velocity of 350 m/s, and the feed rate of 50 μm/s. The wear degree of the blade gradually decreases as porosity increases, and the incursion depth ratio (IDR) dramatically decreases. When the porosity reaches its maximum value, the wear scar of the coating is smoothest, and there is no discernible wear on the blade, the IDR value reaches its minimum, and the abradability of the coating reaches its maximum. Besides, brittle fracture in the YSZ coating with high porosity is concluded to be the reason for better abradability.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 6","pages":"2089 - 2096"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Porosity on Abradability of YSZ Coatings\",\"authors\":\"Dan Guo, Xiaolei Hu, Jianming Liu, Tong Liu\",\"doi\":\"10.1007/s11666-024-01825-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effect of porosity on the wear behavior of YSZ abradable coating under simulated working conditions was studied using the high-temperature and ultra-high-speed abradability test rig. The results show that the porosity significantly influences the macroscopic morphology and abradability of the YSZ coating at the experimental temperatures of 1000 °C, with the blade tip velocity of 350 m/s, and the feed rate of 50 μm/s. The wear degree of the blade gradually decreases as porosity increases, and the incursion depth ratio (IDR) dramatically decreases. When the porosity reaches its maximum value, the wear scar of the coating is smoothest, and there is no discernible wear on the blade, the IDR value reaches its minimum, and the abradability of the coating reaches its maximum. Besides, brittle fracture in the YSZ coating with high porosity is concluded to be the reason for better abradability.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 6\",\"pages\":\"2089 - 2096\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01825-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01825-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of Porosity on Abradability of YSZ Coatings
The effect of porosity on the wear behavior of YSZ abradable coating under simulated working conditions was studied using the high-temperature and ultra-high-speed abradability test rig. The results show that the porosity significantly influences the macroscopic morphology and abradability of the YSZ coating at the experimental temperatures of 1000 °C, with the blade tip velocity of 350 m/s, and the feed rate of 50 μm/s. The wear degree of the blade gradually decreases as porosity increases, and the incursion depth ratio (IDR) dramatically decreases. When the porosity reaches its maximum value, the wear scar of the coating is smoothest, and there is no discernible wear on the blade, the IDR value reaches its minimum, and the abradability of the coating reaches its maximum. Besides, brittle fracture in the YSZ coating with high porosity is concluded to be the reason for better abradability.
期刊介绍:
From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving.
A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization.
The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.