Abhishek Mishra, Rajesh K. Yadav, Shaifali Mishra, Rehana Shahin, Satyam Singh, Abhishek Kumar Gupta, Rajat Singhal, Navneet K. Gupta, Jin-OoK Baeg, Gamal A. El-Hiti, Krishna Kumar Yadav, Sunita Singh
{"title":"太阳动力合成:在统一的光催化-生物催化系统中利用多壁碳纳米管-EB 的光催化魔力,利用太阳能从ɑ-酮戊二酸生产 L-谷氨酸盐","authors":"Abhishek Mishra, Rajesh K. Yadav, Shaifali Mishra, Rehana Shahin, Satyam Singh, Abhishek Kumar Gupta, Rajat Singhal, Navneet K. Gupta, Jin-OoK Baeg, Gamal A. El-Hiti, Krishna Kumar Yadav, Sunita Singh","doi":"10.1007/s42823-024-00780-8","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial photosynthesis, which mimics the natural process used by plants, offers a promising strategy for harnessing solar energy to produce valuable fuels. One intriguing approach is the photocatalyst-enzyme attached system, where a photocatalyst captures light energy and transfers it to an enzyme to drive specific chemical reactions. This study describes the synthesis of a novel photocatalyst (MWCNTCEBr) formed by coupling multiwall carbon nanotubes (MWCNTs) with a dye ethidium bromide (EBr) via a condensation reaction. The resulting photocatalyst exhibits excellent charge separation and migration abilities, leading to enhanced photocatalytic activity. Notably, MWCNTCEBr photocatalyst successfully converts α-Ketoglutarate to L-Glutamate (81.9%) and photo-regeneration of NADH (76.20%) under the influence of solar radiation. Therefore, the study demonstrates the development and the application of MWCNTCEBr photocatalyst for impressive NADH regeneration and bio-transformation.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 1","pages":"257 - 265"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sun-powered synthesis: harnessing multiwall carbon nanotube-EB photocatalytic magic in a unified photocatalytic-biocatalytic system for solar- driven L-glutamate production from ɑ-ketoglutarate\",\"authors\":\"Abhishek Mishra, Rajesh K. Yadav, Shaifali Mishra, Rehana Shahin, Satyam Singh, Abhishek Kumar Gupta, Rajat Singhal, Navneet K. Gupta, Jin-OoK Baeg, Gamal A. El-Hiti, Krishna Kumar Yadav, Sunita Singh\",\"doi\":\"10.1007/s42823-024-00780-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial photosynthesis, which mimics the natural process used by plants, offers a promising strategy for harnessing solar energy to produce valuable fuels. One intriguing approach is the photocatalyst-enzyme attached system, where a photocatalyst captures light energy and transfers it to an enzyme to drive specific chemical reactions. This study describes the synthesis of a novel photocatalyst (MWCNTCEBr) formed by coupling multiwall carbon nanotubes (MWCNTs) with a dye ethidium bromide (EBr) via a condensation reaction. The resulting photocatalyst exhibits excellent charge separation and migration abilities, leading to enhanced photocatalytic activity. Notably, MWCNTCEBr photocatalyst successfully converts α-Ketoglutarate to L-Glutamate (81.9%) and photo-regeneration of NADH (76.20%) under the influence of solar radiation. Therefore, the study demonstrates the development and the application of MWCNTCEBr photocatalyst for impressive NADH regeneration and bio-transformation.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 1\",\"pages\":\"257 - 265\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00780-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00780-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sun-powered synthesis: harnessing multiwall carbon nanotube-EB photocatalytic magic in a unified photocatalytic-biocatalytic system for solar- driven L-glutamate production from ɑ-ketoglutarate
Artificial photosynthesis, which mimics the natural process used by plants, offers a promising strategy for harnessing solar energy to produce valuable fuels. One intriguing approach is the photocatalyst-enzyme attached system, where a photocatalyst captures light energy and transfers it to an enzyme to drive specific chemical reactions. This study describes the synthesis of a novel photocatalyst (MWCNTCEBr) formed by coupling multiwall carbon nanotubes (MWCNTs) with a dye ethidium bromide (EBr) via a condensation reaction. The resulting photocatalyst exhibits excellent charge separation and migration abilities, leading to enhanced photocatalytic activity. Notably, MWCNTCEBr photocatalyst successfully converts α-Ketoglutarate to L-Glutamate (81.9%) and photo-regeneration of NADH (76.20%) under the influence of solar radiation. Therefore, the study demonstrates the development and the application of MWCNTCEBr photocatalyst for impressive NADH regeneration and bio-transformation.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.