基于振动力学的内部粘接强度检测模型研究

IF 3.1 2区 农林科学 Q1 FORESTRY Wood Science and Technology Pub Date : 2024-08-08 DOI:10.1007/s00226-024-01570-1
Zhaojun Xu, Yuxuan Wang, Jing Zhang, Nanfeng Zhu, Xinzhou Wang
{"title":"基于振动力学的内部粘接强度检测模型研究","authors":"Zhaojun Xu,&nbsp;Yuxuan Wang,&nbsp;Jing Zhang,&nbsp;Nanfeng Zhu,&nbsp;Xinzhou Wang","doi":"10.1007/s00226-024-01570-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposed a linear model between internal bond strength and compressive elastic modulus based on Griffith’s fracture theory. The local compressive elastic modulus was determined by non-destructively detecting the inherent frequency of material vibration using a method based on rod longitudinal vibration theory. In the experiment, the inherent vibration frequencies of 10 types of medium-density fiberboard (MDF) were measured through excitation and vibration of piezoelectric ceramics based on longitudinal wave vibration theory. Then, the compressive elastic modulus of each board was calculated. The calculated compressive elastic modulus of MDF and the measured internal bond strength values were fitted into a linear regression model. A high linear correlation between them (r<sup>2</sup> = 0.972) was found, having a mean square error of <span>\\(2.6\\times {10}^{-5}\\)</span>. In addition, the average error between the model prediction value and the measured value was 0.014 MPa, having an average relative error of 1.49%. The maximum error was 0.044 MPa with a maximum relative error of 5.06%, indicating that the developed model was highly consistent with reality and had very small deviations. The results indicated that this proposed method can be used to accurately estimate the internal bond strength by non-destructively detecting the compressive elastic modulus of MDF.</p></div>","PeriodicalId":810,"journal":{"name":"Wood Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on internal bond strength detection model based on vibration mechanics\",\"authors\":\"Zhaojun Xu,&nbsp;Yuxuan Wang,&nbsp;Jing Zhang,&nbsp;Nanfeng Zhu,&nbsp;Xinzhou Wang\",\"doi\":\"10.1007/s00226-024-01570-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposed a linear model between internal bond strength and compressive elastic modulus based on Griffith’s fracture theory. The local compressive elastic modulus was determined by non-destructively detecting the inherent frequency of material vibration using a method based on rod longitudinal vibration theory. In the experiment, the inherent vibration frequencies of 10 types of medium-density fiberboard (MDF) were measured through excitation and vibration of piezoelectric ceramics based on longitudinal wave vibration theory. Then, the compressive elastic modulus of each board was calculated. The calculated compressive elastic modulus of MDF and the measured internal bond strength values were fitted into a linear regression model. A high linear correlation between them (r<sup>2</sup> = 0.972) was found, having a mean square error of <span>\\\\(2.6\\\\times {10}^{-5}\\\\)</span>. In addition, the average error between the model prediction value and the measured value was 0.014 MPa, having an average relative error of 1.49%. The maximum error was 0.044 MPa with a maximum relative error of 5.06%, indicating that the developed model was highly consistent with reality and had very small deviations. The results indicated that this proposed method can be used to accurately estimate the internal bond strength by non-destructively detecting the compressive elastic modulus of MDF.</p></div>\",\"PeriodicalId\":810,\"journal\":{\"name\":\"Wood Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wood Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00226-024-01570-1\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00226-024-01570-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于格里菲斯断裂理论,提出了内部结合强度与压缩弹性模量之间的线性模型。利用基于杆纵向振动理论的方法,通过无损检测材料振动的固有频率来确定局部压缩弹性模量。在实验中,根据纵波振动理论,通过激励和振动压电陶瓷,测量了 10 种中密度纤维板(MDF)的固有振动频率。然后,计算了每种板材的压缩弹性模量。将计算得出的中密度纤维板压缩弹性模量和测得的内部粘接强度值拟合成线性回归模型。结果发现它们之间具有很高的线性相关性(r2 = 0.972),平均平方误差为(2.6÷times {10}^{-5}\)。此外,模型预测值与测量值之间的平均误差为 0.014 MPa,平均相对误差为 1.49%。最大误差为 0.044 MPa,最大相对误差为 5.06%,表明所建立的模型与实际情况高度一致,偏差很小。结果表明,所提出的方法可以通过无损检测中密度纤维板的压缩弹性模量来准确估算内部粘接强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on internal bond strength detection model based on vibration mechanics

This study proposed a linear model between internal bond strength and compressive elastic modulus based on Griffith’s fracture theory. The local compressive elastic modulus was determined by non-destructively detecting the inherent frequency of material vibration using a method based on rod longitudinal vibration theory. In the experiment, the inherent vibration frequencies of 10 types of medium-density fiberboard (MDF) were measured through excitation and vibration of piezoelectric ceramics based on longitudinal wave vibration theory. Then, the compressive elastic modulus of each board was calculated. The calculated compressive elastic modulus of MDF and the measured internal bond strength values were fitted into a linear regression model. A high linear correlation between them (r2 = 0.972) was found, having a mean square error of \(2.6\times {10}^{-5}\). In addition, the average error between the model prediction value and the measured value was 0.014 MPa, having an average relative error of 1.49%. The maximum error was 0.044 MPa with a maximum relative error of 5.06%, indicating that the developed model was highly consistent with reality and had very small deviations. The results indicated that this proposed method can be used to accurately estimate the internal bond strength by non-destructively detecting the compressive elastic modulus of MDF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wood Science and Technology
Wood Science and Technology 工程技术-材料科学:纸与木材
CiteScore
5.90
自引率
5.90%
发文量
75
审稿时长
3 months
期刊介绍: Wood Science and Technology publishes original scientific research results and review papers covering the entire field of wood material science, wood components and wood based products. Subjects are wood biology and wood quality, wood physics and physical technologies, wood chemistry and chemical technologies. Latest advances in areas such as cell wall and wood formation; structural and chemical composition of wood and wood composites and their property relations; physical, mechanical and chemical characterization and relevant methodological developments, and microbiological degradation of wood and wood based products are reported. Topics related to wood technology include machining, gluing, and finishing, composite technology, wood modification, wood mechanics, creep and rheology, and the conversion of wood into pulp and biorefinery products.
期刊最新文献
Determination of local mechanical properties of clear wood in relation to the local fiber deviation Characterizing the chemistry of artificially degraded Scots pine wood serving as a model of naturally degraded waterlogged wood using1H–13C HSQC NMR Early detection of heartwood rot caused by Fistulina hepatica in Castanea sativa productive coppices through low-invasive resistance drilling Effects of plant source selection and chemi-mechanical treatment on the fiber microstructures and mechanical behaviors of nanocellulose films Tuning the antioxidant and antibacterial properties of lignin by physicochemical modification during sequential acid precipitation from Kraft black liquor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1