辅助机械超材料及其在应用工程领域的应用综述

IF 2.6 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Frontiers in Materials Pub Date : 2024-08-06 DOI:10.3389/fmats.2024.1453905
Volha Siniauskaya, Hao Wang, Yadong Liu, Yuhang Chen, Michael Zhuravkov, Yongtao Lyu
{"title":"辅助机械超材料及其在应用工程领域的应用综述","authors":"Volha Siniauskaya, Hao Wang, Yadong Liu, Yuhang Chen, Michael Zhuravkov, Yongtao Lyu","doi":"10.3389/fmats.2024.1453905","DOIUrl":null,"url":null,"abstract":"Metamaterials are artificially created materials or structures with properties not found in nature. They encompass electromagnetic, acoustic, and mechanical metamaterials, which are particularly significant in applied engineering. Mechanical metamaterials exhibit unique mechanical properties such as vanishing shear modulus, negative Poisson’s ratio, negative compressibility, etc. This paper reviews the most commonly used mechanical metamaterials and discusses their applications in the field of applied engineering, specifically in vibration isolation, energy absorption, and vibration reduction. The prospects for future developments in this field are also presented.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering\",\"authors\":\"Volha Siniauskaya, Hao Wang, Yadong Liu, Yuhang Chen, Michael Zhuravkov, Yongtao Lyu\",\"doi\":\"10.3389/fmats.2024.1453905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamaterials are artificially created materials or structures with properties not found in nature. They encompass electromagnetic, acoustic, and mechanical metamaterials, which are particularly significant in applied engineering. Mechanical metamaterials exhibit unique mechanical properties such as vanishing shear modulus, negative Poisson’s ratio, negative compressibility, etc. This paper reviews the most commonly used mechanical metamaterials and discusses their applications in the field of applied engineering, specifically in vibration isolation, energy absorption, and vibration reduction. The prospects for future developments in this field are also presented.\",\"PeriodicalId\":12524,\"journal\":{\"name\":\"Frontiers in Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3389/fmats.2024.1453905\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1453905","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超材料是人工制造的材料或结构,具有自然界所没有的特性。超材料包括电磁超材料、声学超材料和机械超材料,它们在应用工程中尤为重要。机械超材料具有独特的机械特性,如剪切模量消失、负泊松比、负可压缩性等。本文回顾了最常用的机械超材料,并讨论了它们在应用工程领域的应用,特别是在隔振、吸能和减振方面的应用。本文还介绍了该领域的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review on the auxetic mechanical metamaterials and their applications in the field of applied engineering
Metamaterials are artificially created materials or structures with properties not found in nature. They encompass electromagnetic, acoustic, and mechanical metamaterials, which are particularly significant in applied engineering. Mechanical metamaterials exhibit unique mechanical properties such as vanishing shear modulus, negative Poisson’s ratio, negative compressibility, etc. This paper reviews the most commonly used mechanical metamaterials and discusses their applications in the field of applied engineering, specifically in vibration isolation, energy absorption, and vibration reduction. The prospects for future developments in this field are also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Materials
Frontiers in Materials Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
6.20%
发文量
749
审稿时长
12 weeks
期刊介绍: Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide. Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.
期刊最新文献
Mid-infrared optical coherence tomography and machine learning for inspection of 3D-printed ceramics at the micron scale Prediction of thermal protection performance and empirical study of flame-retardant cotton based on a combined model Performance-based engineering: formulating sustainable concrete with sawdust and steel fiber for superior mechanical properties Flexural behavior of a UHPC slab - FRP truss hybrid beam implementing a novel FRP joint and tailored shear connector Broadband acoustic pseudospin topological states based on the reverse spin-orbit coupling in generalized insulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1