SR-CIS:记忆与推理解耦的自反递增系统

Biqing Qi, Junqi Gao, Xinquan Chen, Dong Li, Weinan Zhang, Bowen Zhou
{"title":"SR-CIS:记忆与推理解耦的自反递增系统","authors":"Biqing Qi, Junqi Gao, Xinquan Chen, Dong Li, Weinan Zhang, Bowen Zhou","doi":"arxiv-2408.01970","DOIUrl":null,"url":null,"abstract":"The ability of humans to rapidly learn new knowledge while retaining old\nmemories poses a significant challenge for current deep learning models. To\nhandle this challenge, we draw inspiration from human memory and learning\nmechanisms and propose the Self-Reflective Complementary Incremental System\n(SR-CIS). Comprising the deconstructed Complementary Inference Module (CIM) and\nComplementary Memory Module (CMM), SR-CIS features a small model for fast\ninference and a large model for slow deliberation in CIM, enabled by the\nConfidence-Aware Online Anomaly Detection (CA-OAD) mechanism for efficient\ncollaboration. CMM consists of task-specific Short-Term Memory (STM) region and\na universal Long-Term Memory (LTM) region. By setting task-specific Low-Rank\nAdaptive (LoRA) and corresponding prototype weights and biases, it instantiates\nexternal storage for parameter and representation memory, thus deconstructing\nthe memory module from the inference module. By storing textual descriptions of\nimages during training and combining them with the Scenario Replay Module (SRM)\npost-training for memory combination, along with periodic short-to-long-term\nmemory restructuring, SR-CIS achieves stable incremental memory with limited\nstorage requirements. Balancing model plasticity and memory stability under\nconstraints of limited storage and low data resources, SR-CIS surpasses\nexisting competitive baselines on multiple standard and few-shot incremental\nlearning benchmarks.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SR-CIS: Self-Reflective Incremental System with Decoupled Memory and Reasoning\",\"authors\":\"Biqing Qi, Junqi Gao, Xinquan Chen, Dong Li, Weinan Zhang, Bowen Zhou\",\"doi\":\"arxiv-2408.01970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability of humans to rapidly learn new knowledge while retaining old\\nmemories poses a significant challenge for current deep learning models. To\\nhandle this challenge, we draw inspiration from human memory and learning\\nmechanisms and propose the Self-Reflective Complementary Incremental System\\n(SR-CIS). Comprising the deconstructed Complementary Inference Module (CIM) and\\nComplementary Memory Module (CMM), SR-CIS features a small model for fast\\ninference and a large model for slow deliberation in CIM, enabled by the\\nConfidence-Aware Online Anomaly Detection (CA-OAD) mechanism for efficient\\ncollaboration. CMM consists of task-specific Short-Term Memory (STM) region and\\na universal Long-Term Memory (LTM) region. By setting task-specific Low-Rank\\nAdaptive (LoRA) and corresponding prototype weights and biases, it instantiates\\nexternal storage for parameter and representation memory, thus deconstructing\\nthe memory module from the inference module. By storing textual descriptions of\\nimages during training and combining them with the Scenario Replay Module (SRM)\\npost-training for memory combination, along with periodic short-to-long-term\\nmemory restructuring, SR-CIS achieves stable incremental memory with limited\\nstorage requirements. Balancing model plasticity and memory stability under\\nconstraints of limited storage and low data resources, SR-CIS surpasses\\nexisting competitive baselines on multiple standard and few-shot incremental\\nlearning benchmarks.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人类既能快速学习新知识,又能保留旧记忆,这给当前的深度学习模型带来了巨大挑战。为了应对这一挑战,我们从人类记忆和学习机制中汲取灵感,提出了自反互补增量系统(SR-CIS)。SR-CIS由解构的互补推理模块(CIM)和互补记忆模块(CMM)组成,其特点是CIM中用于快速推理的小模型和用于慢速审议的大模型,并通过可信度感知在线异常检测(CA-OAD)机制实现高效协作。CMM 由特定任务的短期记忆(STM)区域和通用的长期记忆(LTM)区域组成。通过设置特定任务的低强自适应(LoRA)和相应的原型权重和偏置,它将参数和表示记忆的外部存储实例化,从而将记忆模块从推理模块中解构出来。通过在训练过程中存储图像的文本描述,并在训练后将其与情景重放模块(SRM)结合起来进行记忆组合,再加上周期性的长短期记忆重组,SR-CIS 以有限的存储需求实现了稳定的增量记忆。在有限存储和低数据资源的限制下,SR-CIS 平衡了模型可塑性和记忆稳定性,在多个标准和少量增量学习基准上超越了现有的竞争基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SR-CIS: Self-Reflective Incremental System with Decoupled Memory and Reasoning
The ability of humans to rapidly learn new knowledge while retaining old memories poses a significant challenge for current deep learning models. To handle this challenge, we draw inspiration from human memory and learning mechanisms and propose the Self-Reflective Complementary Incremental System (SR-CIS). Comprising the deconstructed Complementary Inference Module (CIM) and Complementary Memory Module (CMM), SR-CIS features a small model for fast inference and a large model for slow deliberation in CIM, enabled by the Confidence-Aware Online Anomaly Detection (CA-OAD) mechanism for efficient collaboration. CMM consists of task-specific Short-Term Memory (STM) region and a universal Long-Term Memory (LTM) region. By setting task-specific Low-Rank Adaptive (LoRA) and corresponding prototype weights and biases, it instantiates external storage for parameter and representation memory, thus deconstructing the memory module from the inference module. By storing textual descriptions of images during training and combining them with the Scenario Replay Module (SRM) post-training for memory combination, along with periodic short-to-long-term memory restructuring, SR-CIS achieves stable incremental memory with limited storage requirements. Balancing model plasticity and memory stability under constraints of limited storage and low data resources, SR-CIS surpasses existing competitive baselines on multiple standard and few-shot incremental learning benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1