{"title":"高温下 ODS 钢管的低循环疲劳行为和微观结构演变","authors":"Yuntao Zhong, Yongduo Sun, Yufeng Du, Zhenyu Zhao, Yong Chen, Huan Sheng Lai, Ruiqian Zhang","doi":"10.1016/j.jmrt.2024.07.213","DOIUrl":null,"url":null,"abstract":"Oxide-dispersion-strengthened (ODS) steels are candidate materials for application in advanced nuclear reactors. In this study, the low-cycle fatigue performances of 13Cr-ODS ferritic steel pipes were investigated at 600, 700, and 800 °C. Cyclic softening was observed at high strain amplitudes with an increase in the number of fatigue cycles. However, cyclic hardening appeared first, and then cyclic softening occurred at a low strain amplitude with the increase in the number of fatigue cycles. By comparing the cyclic stress–strain curves and the monotonic stress–strain curves, it was found that cyclic softening occurred regardless of the strain amplitude. The Coffin–Manson and Basquin equations were used to predict the fatigue of the pipes. Microstructure analysis indicated that cyclic softening was induced by the dynamic recovery and recrystallization, which reduced the number of low-angle grain boundaries in the deformed grains by promoting dislocation annihilation and reorganization. A complex multi-layer core–shell structure with a large size (∼500 nm) was observed.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cycle fatigue behavior and microstructure evolution of ODS steel pipes at high temperatures\",\"authors\":\"Yuntao Zhong, Yongduo Sun, Yufeng Du, Zhenyu Zhao, Yong Chen, Huan Sheng Lai, Ruiqian Zhang\",\"doi\":\"10.1016/j.jmrt.2024.07.213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxide-dispersion-strengthened (ODS) steels are candidate materials for application in advanced nuclear reactors. In this study, the low-cycle fatigue performances of 13Cr-ODS ferritic steel pipes were investigated at 600, 700, and 800 °C. Cyclic softening was observed at high strain amplitudes with an increase in the number of fatigue cycles. However, cyclic hardening appeared first, and then cyclic softening occurred at a low strain amplitude with the increase in the number of fatigue cycles. By comparing the cyclic stress–strain curves and the monotonic stress–strain curves, it was found that cyclic softening occurred regardless of the strain amplitude. The Coffin–Manson and Basquin equations were used to predict the fatigue of the pipes. Microstructure analysis indicated that cyclic softening was induced by the dynamic recovery and recrystallization, which reduced the number of low-angle grain boundaries in the deformed grains by promoting dislocation annihilation and reorganization. A complex multi-layer core–shell structure with a large size (∼500 nm) was observed.\",\"PeriodicalId\":501120,\"journal\":{\"name\":\"Journal of Materials Research and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmrt.2024.07.213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.07.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cycle fatigue behavior and microstructure evolution of ODS steel pipes at high temperatures
Oxide-dispersion-strengthened (ODS) steels are candidate materials for application in advanced nuclear reactors. In this study, the low-cycle fatigue performances of 13Cr-ODS ferritic steel pipes were investigated at 600, 700, and 800 °C. Cyclic softening was observed at high strain amplitudes with an increase in the number of fatigue cycles. However, cyclic hardening appeared first, and then cyclic softening occurred at a low strain amplitude with the increase in the number of fatigue cycles. By comparing the cyclic stress–strain curves and the monotonic stress–strain curves, it was found that cyclic softening occurred regardless of the strain amplitude. The Coffin–Manson and Basquin equations were used to predict the fatigue of the pipes. Microstructure analysis indicated that cyclic softening was induced by the dynamic recovery and recrystallization, which reduced the number of low-angle grain boundaries in the deformed grains by promoting dislocation annihilation and reorganization. A complex multi-layer core–shell structure with a large size (∼500 nm) was observed.