Bing He , Ying Ling , Zhixun Wang , Wenbin Gong , Zhe Wang , Yanting Liu , Tianzhu Zhou , Ting Xiong , Shuai Wang , Yonggang Wang , Qingwen Li , Qichong Zhang , Lei Wei
{"title":"调节 NiOOH 与镁离子的选择性相互作用,实现高性能水性电池","authors":"Bing He , Ying Ling , Zhixun Wang , Wenbin Gong , Zhe Wang , Yanting Liu , Tianzhu Zhou , Ting Xiong , Shuai Wang , Yonggang Wang , Qingwen Li , Qichong Zhang , Lei Wei","doi":"10.1016/j.esci.2024.100293","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous Mg-ion batteries (AMIBs) featuring advantages of good safety, low cost, and high specific energy have been recognized as a promising energy-storage technology. However, the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg<sup>2+</sup> and host materials. Here, layered-structured NiOOH, as traditional cathodes for alkaline batteries, is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform (0.57 V) in neutral aqueous electrolytes. Benefiting from the unique core/shell structure, the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g<sup>−1</sup> and long cycle stability. Further theoretical calculations reveal that the binding energy of hydrated Mg<sup>2+</sup> is higher than that of Mg<sup>2+</sup> with NiOOH, resulting in that Mg<sup>2+</sup> is easily intercalated/de-intercalated into/from NiOOH. Benefiting from the freestanding design, the assembled fiber-shaped “rocking-chair” NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility, which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 5","pages":"Article 100293"},"PeriodicalIF":42.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating selective interaction of NiOOH with Mg ions for high-performance aqueous batteries\",\"authors\":\"Bing He , Ying Ling , Zhixun Wang , Wenbin Gong , Zhe Wang , Yanting Liu , Tianzhu Zhou , Ting Xiong , Shuai Wang , Yonggang Wang , Qingwen Li , Qichong Zhang , Lei Wei\",\"doi\":\"10.1016/j.esci.2024.100293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aqueous Mg-ion batteries (AMIBs) featuring advantages of good safety, low cost, and high specific energy have been recognized as a promising energy-storage technology. However, the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg<sup>2+</sup> and host materials. Here, layered-structured NiOOH, as traditional cathodes for alkaline batteries, is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform (0.57 V) in neutral aqueous electrolytes. Benefiting from the unique core/shell structure, the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g<sup>−1</sup> and long cycle stability. Further theoretical calculations reveal that the binding energy of hydrated Mg<sup>2+</sup> is higher than that of Mg<sup>2+</sup> with NiOOH, resulting in that Mg<sup>2+</sup> is easily intercalated/de-intercalated into/from NiOOH. Benefiting from the freestanding design, the assembled fiber-shaped “rocking-chair” NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility, which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 5\",\"pages\":\"Article 100293\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724000818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724000818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Modulating selective interaction of NiOOH with Mg ions for high-performance aqueous batteries
Aqueous Mg-ion batteries (AMIBs) featuring advantages of good safety, low cost, and high specific energy have been recognized as a promising energy-storage technology. However, the performance of AMIBs is consistently limited by sluggish diffusion kinetics and structural degradation of cathode materials arising from the strong electrostatic interactions between high-charge-density Mg2+ and host materials. Here, layered-structured NiOOH, as traditional cathodes for alkaline batteries, is initially demonstrated to realize proton-assisted Mg-(de)intercalation chemistry with a high discharge platform (0.57 V) in neutral aqueous electrolytes. Benefiting from the unique core/shell structure, the resulting NiOOH/CNT cathodes achieve a high capacity of 122.5 mAh g−1 and long cycle stability. Further theoretical calculations reveal that the binding energy of hydrated Mg2+ is higher than that of Mg2+ with NiOOH, resulting in that Mg2+ is easily intercalated/de-intercalated into/from NiOOH. Benefiting from the freestanding design, the assembled fiber-shaped “rocking-chair” NaTi2(PO4)3//NiOOH AMIB shows a high energy density and satisfactory mechanical flexibility, which could be woven into a commercial fabric and power for fiber-shaped photoelectric sensors.