针对不完整数据的新型特征选择框架

IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2024-08-06 DOI:10.1016/j.chemolab.2024.105193
Cong Guo, Wei Yang, Zheng Li, Chun Liu
{"title":"针对不完整数据的新型特征选择框架","authors":"Cong Guo,&nbsp;Wei Yang,&nbsp;Zheng Li,&nbsp;Chun Liu","doi":"10.1016/j.chemolab.2024.105193","DOIUrl":null,"url":null,"abstract":"<div><p>Feature selection on incomplete datasets is a challenging task. To address this challenge, existing methods first employ imputation methods to complete the dataset and then perform feature selection based on the imputed dataset. Since missing value imputation and feature selection are entirely independent, the importance of features cannot be considered during imputation. However, in real-world scenarios or datasets, different features have varying degrees of importance. To this end, we proposed a novel incomplete data feature selection framework that considers feature importance. The framework mainly consists of two alternating iterative stages: M-stage and W-stage. In the M-stage, missing values are imputed based on a given feature importance vector and multiple initial imputation results. In the W-stage, an improved reliefF algorithm is employed to learn the feature importance vector based on the imputed data. In particular, the feature importance output by the W-stage in the current iteration will be used as the input of the M-stage in the next iteration. Experimental results on artificial and real missing datasets demonstrate that the proposed method outperforms other approaches significantly.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"252 ","pages":"Article 105193"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel feature selection framework for incomplete data\",\"authors\":\"Cong Guo,&nbsp;Wei Yang,&nbsp;Zheng Li,&nbsp;Chun Liu\",\"doi\":\"10.1016/j.chemolab.2024.105193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature selection on incomplete datasets is a challenging task. To address this challenge, existing methods first employ imputation methods to complete the dataset and then perform feature selection based on the imputed dataset. Since missing value imputation and feature selection are entirely independent, the importance of features cannot be considered during imputation. However, in real-world scenarios or datasets, different features have varying degrees of importance. To this end, we proposed a novel incomplete data feature selection framework that considers feature importance. The framework mainly consists of two alternating iterative stages: M-stage and W-stage. In the M-stage, missing values are imputed based on a given feature importance vector and multiple initial imputation results. In the W-stage, an improved reliefF algorithm is employed to learn the feature importance vector based on the imputed data. In particular, the feature importance output by the W-stage in the current iteration will be used as the input of the M-stage in the next iteration. Experimental results on artificial and real missing datasets demonstrate that the proposed method outperforms other approaches significantly.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"252 \",\"pages\":\"Article 105193\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001333\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001333","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在不完整数据集上进行特征选择是一项具有挑战性的任务。为了应对这一挑战,现有方法首先采用估算方法来完成数据集,然后根据估算数据集进行特征选择。由于缺失值估算和特征选择是完全独立的,因此在估算过程中无法考虑特征的重要性。然而,在现实世界的场景或数据集中,不同特征的重要程度各不相同。为此,我们提出了一种考虑特征重要性的新型不完整数据特征选择框架。该框架主要包括两个交替迭代阶段:M 阶段和 W 阶段。在 M 阶段,根据给定的特征重要性向量和多个初始估算结果对缺失值进行估算。在 W 阶段,采用改进的 reliefF 算法,根据估算数据学习特征重要性向量。特别是,W 阶段在当前迭代中输出的特征重要性将在下一次迭代中用作 M 阶段的输入。在人工和真实缺失数据集上的实验结果表明,所提出的方法明显优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel feature selection framework for incomplete data

Feature selection on incomplete datasets is a challenging task. To address this challenge, existing methods first employ imputation methods to complete the dataset and then perform feature selection based on the imputed dataset. Since missing value imputation and feature selection are entirely independent, the importance of features cannot be considered during imputation. However, in real-world scenarios or datasets, different features have varying degrees of importance. To this end, we proposed a novel incomplete data feature selection framework that considers feature importance. The framework mainly consists of two alternating iterative stages: M-stage and W-stage. In the M-stage, missing values are imputed based on a given feature importance vector and multiple initial imputation results. In the W-stage, an improved reliefF algorithm is employed to learn the feature importance vector based on the imputed data. In particular, the feature importance output by the W-stage in the current iteration will be used as the input of the M-stage in the next iteration. Experimental results on artificial and real missing datasets demonstrate that the proposed method outperforms other approaches significantly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
A flame image soft sensor for oxygen content prediction based on denoising diffusion probabilistic model Prediction of potential antitumor components in Ganoderma lucidum: A combined approach using machine learning and molecular docking Spectra data calibration based on deep residual modeling of independent component regression Enhanced CO2 leak detection in soil: High-fidelity digital colorimetry with machine learning and ACES AP0 Quantitative structure properties relationship (QSPR) analysis for physicochemical properties of nonsteroidal anti-inflammatory drugs (NSAIDs) usingVe degree-based reducible topological indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1