{"title":"开发 REGAI:Rubric Enabled Generative Artificial Intelligence(评分标准支持的生成式人工智能","authors":"Zach Johnson, Jeremy Straub","doi":"arxiv-2408.02811","DOIUrl":null,"url":null,"abstract":"This paper presents and evaluates a new retrieval augmented generation (RAG)\nand large language model (LLM)-based artificial intelligence (AI) technique:\nrubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics,\nwhich can be created manually or automatically by the system, to enhance the\nperformance of LLMs for evaluation purposes. REGAI improves on the performance\nof both classical LLMs and RAG-based LLM techniques. This paper describes\nREGAI, presents data regarding its performance and discusses several possible\napplication areas for the technology.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of REGAI: Rubric Enabled Generative Artificial Intelligence\",\"authors\":\"Zach Johnson, Jeremy Straub\",\"doi\":\"arxiv-2408.02811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and evaluates a new retrieval augmented generation (RAG)\\nand large language model (LLM)-based artificial intelligence (AI) technique:\\nrubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics,\\nwhich can be created manually or automatically by the system, to enhance the\\nperformance of LLMs for evaluation purposes. REGAI improves on the performance\\nof both classical LLMs and RAG-based LLM techniques. This paper describes\\nREGAI, presents data regarding its performance and discusses several possible\\napplication areas for the technology.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of REGAI: Rubric Enabled Generative Artificial Intelligence
This paper presents and evaluates a new retrieval augmented generation (RAG)
and large language model (LLM)-based artificial intelligence (AI) technique:
rubric enabled generative artificial intelligence (REGAI). REGAI uses rubrics,
which can be created manually or automatically by the system, to enhance the
performance of LLMs for evaluation purposes. REGAI improves on the performance
of both classical LLMs and RAG-based LLM techniques. This paper describes
REGAI, presents data regarding its performance and discusses several possible
application areas for the technology.