基于波拉结构和末端锚定的新型多域肽自组装生物材料:纳米技术与抗菌疗法的结合

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-08-06 DOI:10.1016/j.mtbio.2024.101183
{"title":"基于波拉结构和末端锚定的新型多域肽自组装生物材料:纳米技术与抗菌疗法的结合","authors":"","doi":"10.1016/j.mtbio.2024.101183","DOIUrl":null,"url":null,"abstract":"<div><p>To ameliorate the diminished antimicrobial efficiency and physiological stability associated with monomeric antimicrobial peptides (AMPs) molecules, future research will focus on the artificial design of self-assembling peptides to replace monomeric entities, aiming to combat the antibiotic resistance crisis caused by microbial infections. In this study, the “bola” structure was used as the foundational architecture driving molecular self-assembly, with hydrophobic amino acids at the termini to anchor and finely adjust the sequence, thereby organizing a range of novel multidomain peptides (MDPs) templates into an ABA block motif. The results indicate that FW2 (GM<sub>SI</sub> = 53.94) exhibits the highest selectivity index among all MDPs and can form spherical micelles in an aqueous medium without the addition of any exogenous additives. FW2 exhibited high stability in vitro in the presence of physiological salt ions, serum, and various pH conditions. It exhibited excellent biocompatibility and efficacy both <em>in vivo</em> and in vitro. Furthermore, FW2 strongly interacts with the lipid membrane and employs various synergistic mechanisms, such as reactive oxygen species (ROS) accumulation, collectively driving cellular apoptosis. This study demonstrates a straightforward strategy for designing self-assembling peptides and promotes the advancement of peptide-based biomaterials integration progress with nanotechnology.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002448/pdfft?md5=938a9b47bf59aeb15ec0b208be1d1e4e&pid=1-s2.0-S2590006424002448-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel multidomain peptide self-assembly biomaterials based on bola structure and terminal anchoring: Nanotechnology meets antimicrobial therapy\",\"authors\":\"\",\"doi\":\"10.1016/j.mtbio.2024.101183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To ameliorate the diminished antimicrobial efficiency and physiological stability associated with monomeric antimicrobial peptides (AMPs) molecules, future research will focus on the artificial design of self-assembling peptides to replace monomeric entities, aiming to combat the antibiotic resistance crisis caused by microbial infections. In this study, the “bola” structure was used as the foundational architecture driving molecular self-assembly, with hydrophobic amino acids at the termini to anchor and finely adjust the sequence, thereby organizing a range of novel multidomain peptides (MDPs) templates into an ABA block motif. The results indicate that FW2 (GM<sub>SI</sub> = 53.94) exhibits the highest selectivity index among all MDPs and can form spherical micelles in an aqueous medium without the addition of any exogenous additives. FW2 exhibited high stability in vitro in the presence of physiological salt ions, serum, and various pH conditions. It exhibited excellent biocompatibility and efficacy both <em>in vivo</em> and in vitro. Furthermore, FW2 strongly interacts with the lipid membrane and employs various synergistic mechanisms, such as reactive oxygen species (ROS) accumulation, collectively driving cellular apoptosis. This study demonstrates a straightforward strategy for designing self-assembling peptides and promotes the advancement of peptide-based biomaterials integration progress with nanotechnology.</p></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590006424002448/pdfft?md5=938a9b47bf59aeb15ec0b208be1d1e4e&pid=1-s2.0-S2590006424002448-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424002448\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424002448","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了改善单体抗菌肽(AMPs)分子抗菌效率和生理稳定性降低的问题,未来的研究重点将是人工设计自组装肽来取代单体实体,以应对微生物感染引起的抗生素耐药性危机。在这项研究中,"波拉 "结构被用作驱动分子自组装的基础结构,末端的疏水氨基酸用于锚定和微调序列,从而将一系列新型多肽(MDPs)模板组织成一个 ABA 块图案。研究结果表明,FW2(GM = 53.94)在所有 MDPs 中具有最高的选择性指数,无需添加任何外源添加剂即可在水介质中形成球形胶束。FW2 在生理盐离子、血清和各种 pH 值条件下均表现出较高的体外稳定性。它在体外和体内都表现出优异的生物相容性和功效。此外,FW2 还能与脂膜产生强烈的相互作用,并利用各种协同机制(如活性氧积累)共同驱动细胞凋亡。这项研究展示了一种设计自组装肽的直接策略,并促进了肽基生物材料与纳米技术的融合发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel multidomain peptide self-assembly biomaterials based on bola structure and terminal anchoring: Nanotechnology meets antimicrobial therapy

To ameliorate the diminished antimicrobial efficiency and physiological stability associated with monomeric antimicrobial peptides (AMPs) molecules, future research will focus on the artificial design of self-assembling peptides to replace monomeric entities, aiming to combat the antibiotic resistance crisis caused by microbial infections. In this study, the “bola” structure was used as the foundational architecture driving molecular self-assembly, with hydrophobic amino acids at the termini to anchor and finely adjust the sequence, thereby organizing a range of novel multidomain peptides (MDPs) templates into an ABA block motif. The results indicate that FW2 (GMSI = 53.94) exhibits the highest selectivity index among all MDPs and can form spherical micelles in an aqueous medium without the addition of any exogenous additives. FW2 exhibited high stability in vitro in the presence of physiological salt ions, serum, and various pH conditions. It exhibited excellent biocompatibility and efficacy both in vivo and in vitro. Furthermore, FW2 strongly interacts with the lipid membrane and employs various synergistic mechanisms, such as reactive oxygen species (ROS) accumulation, collectively driving cellular apoptosis. This study demonstrates a straightforward strategy for designing self-assembling peptides and promotes the advancement of peptide-based biomaterials integration progress with nanotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
The combination of hydrogels and rutin-loaded black phosphorus nanosheets treats rheumatoid arthritis Decellularized extracellular matrix-based disease models for drug screening Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration Editorial Board Amorphous zinc phosphate nanoclusters loaded polycarbonate thermosensitive hydrogel: An innovative strategy for promoting wound healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1