{"title":"安大略省南部的均质蚯蚓群落","authors":"Marie-Eugénie Maggia , Thibaud Decaëns , Karl Cottenie , Dirk Steinke","doi":"10.1016/j.ejsobi.2024.103655","DOIUrl":null,"url":null,"abstract":"<div><p>Earthworms are key organisms of soil ecosystems, however, the determinants of the structure and distribution of earthworm communities and their relationships with agricultural practices are not well-studied in Canada. We sampled earthworm communities from four different habitat types along a disturbance gradient: agricultural crop land, forest around crop fields (buffers), recently restored natural grassland, and forests from conservation areas. As most species living in Canada are considered exotic and because of the recent colonization of Canadian soils by mostly European species after the extinction of the native species due to the glaciation of North America during the Pleistocene, we hypothesized that the impact of agricultural practices will be similar to what is observed in Europe: for example, crop habitat showing lowest abundance, richness, and proportion of epigeic and anecic species, due to lesser soil organic matter content and higher soil disturbance. We also hypothesized that important soil variables would be associated with these habitat differences. For each habitat we sampled earthworms using a combination of two methods (quantitative + qualitative) at three replicate sites, for two years between May and July together with important environmental variables. We found lower density and diversity of earthworms in crop habitat and proportionally more epigeic species than expected. Contrary to our predictions, forest-buffer earthworm communities were more similar to crop than to forest habitats, and soil environmental variables could not explain the variations in the spatial distribution of earthworm communities. In fact, our results revealed a more homogeneous distribution of the species diversity across the habitat gradient at local scales in Southern Ontario. This was mainly associated with spatial factors, probably due to historical extinction-colonization events of earthworms in Canada and the high invasive potential of the species currently present.</p></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"122 ","pages":"Article 103655"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous earthworm communities in Southern Ontario\",\"authors\":\"Marie-Eugénie Maggia , Thibaud Decaëns , Karl Cottenie , Dirk Steinke\",\"doi\":\"10.1016/j.ejsobi.2024.103655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earthworms are key organisms of soil ecosystems, however, the determinants of the structure and distribution of earthworm communities and their relationships with agricultural practices are not well-studied in Canada. We sampled earthworm communities from four different habitat types along a disturbance gradient: agricultural crop land, forest around crop fields (buffers), recently restored natural grassland, and forests from conservation areas. As most species living in Canada are considered exotic and because of the recent colonization of Canadian soils by mostly European species after the extinction of the native species due to the glaciation of North America during the Pleistocene, we hypothesized that the impact of agricultural practices will be similar to what is observed in Europe: for example, crop habitat showing lowest abundance, richness, and proportion of epigeic and anecic species, due to lesser soil organic matter content and higher soil disturbance. We also hypothesized that important soil variables would be associated with these habitat differences. For each habitat we sampled earthworms using a combination of two methods (quantitative + qualitative) at three replicate sites, for two years between May and July together with important environmental variables. We found lower density and diversity of earthworms in crop habitat and proportionally more epigeic species than expected. Contrary to our predictions, forest-buffer earthworm communities were more similar to crop than to forest habitats, and soil environmental variables could not explain the variations in the spatial distribution of earthworm communities. In fact, our results revealed a more homogeneous distribution of the species diversity across the habitat gradient at local scales in Southern Ontario. This was mainly associated with spatial factors, probably due to historical extinction-colonization events of earthworms in Canada and the high invasive potential of the species currently present.</p></div>\",\"PeriodicalId\":12057,\"journal\":{\"name\":\"European Journal of Soil Biology\",\"volume\":\"122 \",\"pages\":\"Article 103655\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S116455632400061X\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S116455632400061X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Homogeneous earthworm communities in Southern Ontario
Earthworms are key organisms of soil ecosystems, however, the determinants of the structure and distribution of earthworm communities and their relationships with agricultural practices are not well-studied in Canada. We sampled earthworm communities from four different habitat types along a disturbance gradient: agricultural crop land, forest around crop fields (buffers), recently restored natural grassland, and forests from conservation areas. As most species living in Canada are considered exotic and because of the recent colonization of Canadian soils by mostly European species after the extinction of the native species due to the glaciation of North America during the Pleistocene, we hypothesized that the impact of agricultural practices will be similar to what is observed in Europe: for example, crop habitat showing lowest abundance, richness, and proportion of epigeic and anecic species, due to lesser soil organic matter content and higher soil disturbance. We also hypothesized that important soil variables would be associated with these habitat differences. For each habitat we sampled earthworms using a combination of two methods (quantitative + qualitative) at three replicate sites, for two years between May and July together with important environmental variables. We found lower density and diversity of earthworms in crop habitat and proportionally more epigeic species than expected. Contrary to our predictions, forest-buffer earthworm communities were more similar to crop than to forest habitats, and soil environmental variables could not explain the variations in the spatial distribution of earthworm communities. In fact, our results revealed a more homogeneous distribution of the species diversity across the habitat gradient at local scales in Southern Ontario. This was mainly associated with spatial factors, probably due to historical extinction-colonization events of earthworms in Canada and the high invasive potential of the species currently present.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.