{"title":"中国太湖丝状蓝藻产生的 2-甲基异龙脑的时空动态及相关驱动因素","authors":"Donghao Wu , Mingxin Chen , Aichun Shen , Yadong Shi","doi":"10.1016/j.hal.2024.102703","DOIUrl":null,"url":null,"abstract":"<div><p>The proliferation of filamentous cyanobacteria in lakes can result in the generation of odor-causing compounds, predominantly 2-methylisoborneol (2-MIB), which pose odor-related challenges. In an effort to elucidate the spatiotemporal dynamics of 2-MIB and related influencing factors in East Lake Taihu, monthly investigations were undertaken from April 2022 to March 2023. In addition to the monthly survey, a whole-lake survey was conducted during the high-temperature period from July to September. The monthly survey revealed a distinct unimodal fluctuation in the concentration of 2-MIB in East Lake Taihu, with an average concentration at 297.0 ng/L during the high-temperature period. During the high-temperature period, the filamentous cyanobacterial communities detected in East Lake Taihu consisted primarily of species belonging to genera <em>Leptolyngbya, Oscillatoria, Planktothricoides</em>, and <em>Pseudanabaena</em>. However, no significant correlations were found between their densities and 2-MIB concentration. In addition, the <em>mic</em> gene was predominantly detected in genera <em>Pseudanabaena</em> and <em>Planktothricoides</em>, with the latter being the primary contributor to 2-MIB production. Furthermore, a succession of cyanobacteria capable of producing 2-MIB was detected, with water temperature and radiation intensity being identified as the primary driving factors. The temporal variation of 2-MIB concentration within East Lake Taihu during the whole year was primarily modulated by factors such as water temperature, water transparency, dissolved oxygen, and chlorophyll-<em>a</em>. During the high-temperature period, the 2-MIB concentration in the alga-dominated zone of East Lake Taihu was approximately 1.7 times greater than that in the macrophyte-dominated zone, with nutrient and transparency being identified as the main influencing factors. Consequently, our findings are of great significance for monitoring the sources and variation of 2-MIB in shallow lakes, providing a scientific foundation and theoretical guidance for odor management.</p></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"138 ","pages":"Article 102703"},"PeriodicalIF":5.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics of 2-methylisoborneol produced by filamentous cyanobacteria and associated driving factors in Lake Taihu, China\",\"authors\":\"Donghao Wu , Mingxin Chen , Aichun Shen , Yadong Shi\",\"doi\":\"10.1016/j.hal.2024.102703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The proliferation of filamentous cyanobacteria in lakes can result in the generation of odor-causing compounds, predominantly 2-methylisoborneol (2-MIB), which pose odor-related challenges. In an effort to elucidate the spatiotemporal dynamics of 2-MIB and related influencing factors in East Lake Taihu, monthly investigations were undertaken from April 2022 to March 2023. In addition to the monthly survey, a whole-lake survey was conducted during the high-temperature period from July to September. The monthly survey revealed a distinct unimodal fluctuation in the concentration of 2-MIB in East Lake Taihu, with an average concentration at 297.0 ng/L during the high-temperature period. During the high-temperature period, the filamentous cyanobacterial communities detected in East Lake Taihu consisted primarily of species belonging to genera <em>Leptolyngbya, Oscillatoria, Planktothricoides</em>, and <em>Pseudanabaena</em>. However, no significant correlations were found between their densities and 2-MIB concentration. In addition, the <em>mic</em> gene was predominantly detected in genera <em>Pseudanabaena</em> and <em>Planktothricoides</em>, with the latter being the primary contributor to 2-MIB production. Furthermore, a succession of cyanobacteria capable of producing 2-MIB was detected, with water temperature and radiation intensity being identified as the primary driving factors. The temporal variation of 2-MIB concentration within East Lake Taihu during the whole year was primarily modulated by factors such as water temperature, water transparency, dissolved oxygen, and chlorophyll-<em>a</em>. During the high-temperature period, the 2-MIB concentration in the alga-dominated zone of East Lake Taihu was approximately 1.7 times greater than that in the macrophyte-dominated zone, with nutrient and transparency being identified as the main influencing factors. Consequently, our findings are of great significance for monitoring the sources and variation of 2-MIB in shallow lakes, providing a scientific foundation and theoretical guidance for odor management.</p></div>\",\"PeriodicalId\":12897,\"journal\":{\"name\":\"Harmful Algae\",\"volume\":\"138 \",\"pages\":\"Article 102703\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Harmful Algae\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568988324001367\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324001367","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Spatiotemporal dynamics of 2-methylisoborneol produced by filamentous cyanobacteria and associated driving factors in Lake Taihu, China
The proliferation of filamentous cyanobacteria in lakes can result in the generation of odor-causing compounds, predominantly 2-methylisoborneol (2-MIB), which pose odor-related challenges. In an effort to elucidate the spatiotemporal dynamics of 2-MIB and related influencing factors in East Lake Taihu, monthly investigations were undertaken from April 2022 to March 2023. In addition to the monthly survey, a whole-lake survey was conducted during the high-temperature period from July to September. The monthly survey revealed a distinct unimodal fluctuation in the concentration of 2-MIB in East Lake Taihu, with an average concentration at 297.0 ng/L during the high-temperature period. During the high-temperature period, the filamentous cyanobacterial communities detected in East Lake Taihu consisted primarily of species belonging to genera Leptolyngbya, Oscillatoria, Planktothricoides, and Pseudanabaena. However, no significant correlations were found between their densities and 2-MIB concentration. In addition, the mic gene was predominantly detected in genera Pseudanabaena and Planktothricoides, with the latter being the primary contributor to 2-MIB production. Furthermore, a succession of cyanobacteria capable of producing 2-MIB was detected, with water temperature and radiation intensity being identified as the primary driving factors. The temporal variation of 2-MIB concentration within East Lake Taihu during the whole year was primarily modulated by factors such as water temperature, water transparency, dissolved oxygen, and chlorophyll-a. During the high-temperature period, the 2-MIB concentration in the alga-dominated zone of East Lake Taihu was approximately 1.7 times greater than that in the macrophyte-dominated zone, with nutrient and transparency being identified as the main influencing factors. Consequently, our findings are of great significance for monitoring the sources and variation of 2-MIB in shallow lakes, providing a scientific foundation and theoretical guidance for odor management.
期刊介绍:
This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.