张量类型和噪声强度感知精确调度扩散网络的全量化训练加速器

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2024-08-06 DOI:10.1109/TCSII.2024.3439319
Ruoyang Liu;Wenxun Wang;Chen Tang;Weichen Gao;Huazhong Yang;Yongpan Liu
{"title":"张量类型和噪声强度感知精确调度扩散网络的全量化训练加速器","authors":"Ruoyang Liu;Wenxun Wang;Chen Tang;Weichen Gao;Huazhong Yang;Yongpan Liu","doi":"10.1109/TCSII.2024.3439319","DOIUrl":null,"url":null,"abstract":"Fine-grained mixed-precision fully-quantized methods have great potential to accelerate neural network training, but existing methods exhibit large accuracy loss for more complex models such as diffusion networks. This brief introduces a fully-quantized training accelerator for diffusion networks. It features a novel training framework with tensor-type- and noise-strength-aware precision scheduling to optimize bit-width allocation. The processing cluster design enables dynamical switching bit-width mappings for model weights, allows concurrent processing in 4 different bit-widths, and incorporates a gradient square sum collection unit to minimize on-chip memory access. Experimental results show up to 2.4\n<inline-formula> <tex-math>$\\times $ </tex-math></inline-formula>\n training speedup and 81% operation bit-width overhead reduction compared to existing designs, with minimal impact on image generation quality.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"4994-4998"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fully Quantized Training Accelerator for Diffusion Network With Tensor Type & Noise Strength Aware Precision Scheduling\",\"authors\":\"Ruoyang Liu;Wenxun Wang;Chen Tang;Weichen Gao;Huazhong Yang;Yongpan Liu\",\"doi\":\"10.1109/TCSII.2024.3439319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fine-grained mixed-precision fully-quantized methods have great potential to accelerate neural network training, but existing methods exhibit large accuracy loss for more complex models such as diffusion networks. This brief introduces a fully-quantized training accelerator for diffusion networks. It features a novel training framework with tensor-type- and noise-strength-aware precision scheduling to optimize bit-width allocation. The processing cluster design enables dynamical switching bit-width mappings for model weights, allows concurrent processing in 4 different bit-widths, and incorporates a gradient square sum collection unit to minimize on-chip memory access. Experimental results show up to 2.4\\n<inline-formula> <tex-math>$\\\\times $ </tex-math></inline-formula>\\n training speedup and 81% operation bit-width overhead reduction compared to existing designs, with minimal impact on image generation quality.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"71 12\",\"pages\":\"4994-4998\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10623715/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10623715/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

细粒度混合精度全量化方法在加速神经网络训练方面具有巨大潜力,但对于扩散网络等更复杂的模型,现有方法表现出较大的精度损失。本简介介绍了一种用于扩散网络的全量化训练加速器。它采用新颖的训练框架,具有张量类型和噪声强度感知精度调度功能,可优化位宽分配。处理集群设计实现了模型权重位宽映射的动态切换,允许在 4 种不同位宽下并发处理,并集成了梯度平方和收集单元,以最大限度地减少片上内存访问。实验结果表明,与现有设计相比,训练速度提高了 2.4 倍,操作位宽开销减少了 81%,而对图像生成质量的影响却微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fully Quantized Training Accelerator for Diffusion Network With Tensor Type & Noise Strength Aware Precision Scheduling
Fine-grained mixed-precision fully-quantized methods have great potential to accelerate neural network training, but existing methods exhibit large accuracy loss for more complex models such as diffusion networks. This brief introduces a fully-quantized training accelerator for diffusion networks. It features a novel training framework with tensor-type- and noise-strength-aware precision scheduling to optimize bit-width allocation. The processing cluster design enables dynamical switching bit-width mappings for model weights, allows concurrent processing in 4 different bit-widths, and incorporates a gradient square sum collection unit to minimize on-chip memory access. Experimental results show up to 2.4 $\times $ training speedup and 81% operation bit-width overhead reduction compared to existing designs, with minimal impact on image generation quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information Table of Contents Guest Editorial Special Issue on the 2024 ISICAS: A CAS Journal Track Symposium IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1