Bo Cao , Peng Lin , Yanling Wang , Weiwei Yang , Longxiang Ren , Zhongqiao Ge , Hongjing Sui , Yuan Gao , Mengyuan Liu , Guangcheng Bei , Susan Zhou , Qin Zhou , Feiyun Cui
{"title":"用于即时筛查病毒性呼吸道感染的基于配体的智能表面增强拉曼光谱生物传感器","authors":"Bo Cao , Peng Lin , Yanling Wang , Weiwei Yang , Longxiang Ren , Zhongqiao Ge , Hongjing Sui , Yuan Gao , Mengyuan Liu , Guangcheng Bei , Susan Zhou , Qin Zhou , Feiyun Cui","doi":"10.1016/j.biosx.2024.100527","DOIUrl":null,"url":null,"abstract":"<div><p>The global spread of viral respiratory infections continues to pose a substantial threat to human health, exacerbating the societal burden. Timely and precise detection of viruses is pivotal in mitigating pandemic transmission. Currently, the prevalent diagnostic techniques for viruses include real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and colloidal gold assays. However, intricate workflows and protracted processing times of RT-qPCR and ELISA preclude real-time diagnostics, despite their high accuracy. Colloidal gold assays offer rapid turnaround. However, their accuracy and sensitivity are limited, particularly in the context of emerging variants like SARS-CoV-2, which renders them suboptimal test tools. Mounting evidence suggests that surface-enhanced Raman spectroscopy (SERS), with its streamlined operation, rapid analysis, high specificity and sensitivity, holds significant potential as a superior alternative test tool. This review consolidates various SERS-based approaches for detecting respiratory infection virus (RIV) and delineates their characteristics. The unique strengths of SERS technology, including its exceptional sensitivity, robust specificity, and expedited turnaround times, earmark it as particularly well-suited for large-scale instant screening of viral infections within populations.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100527"},"PeriodicalIF":10.6100,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000918/pdfft?md5=754984b7ae792e8dbdc7d4ffcae6a4be&pid=1-s2.0-S2590137024000918-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intelligent and ligand-based surface-enhanced Raman spectroscopy biosensors for the instant screening of viral respiratory infections\",\"authors\":\"Bo Cao , Peng Lin , Yanling Wang , Weiwei Yang , Longxiang Ren , Zhongqiao Ge , Hongjing Sui , Yuan Gao , Mengyuan Liu , Guangcheng Bei , Susan Zhou , Qin Zhou , Feiyun Cui\",\"doi\":\"10.1016/j.biosx.2024.100527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global spread of viral respiratory infections continues to pose a substantial threat to human health, exacerbating the societal burden. Timely and precise detection of viruses is pivotal in mitigating pandemic transmission. Currently, the prevalent diagnostic techniques for viruses include real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and colloidal gold assays. However, intricate workflows and protracted processing times of RT-qPCR and ELISA preclude real-time diagnostics, despite their high accuracy. Colloidal gold assays offer rapid turnaround. However, their accuracy and sensitivity are limited, particularly in the context of emerging variants like SARS-CoV-2, which renders them suboptimal test tools. Mounting evidence suggests that surface-enhanced Raman spectroscopy (SERS), with its streamlined operation, rapid analysis, high specificity and sensitivity, holds significant potential as a superior alternative test tool. This review consolidates various SERS-based approaches for detecting respiratory infection virus (RIV) and delineates their characteristics. The unique strengths of SERS technology, including its exceptional sensitivity, robust specificity, and expedited turnaround times, earmark it as particularly well-suited for large-scale instant screening of viral infections within populations.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"20 \",\"pages\":\"Article 100527\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000918/pdfft?md5=754984b7ae792e8dbdc7d4ffcae6a4be&pid=1-s2.0-S2590137024000918-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Intelligent and ligand-based surface-enhanced Raman spectroscopy biosensors for the instant screening of viral respiratory infections
The global spread of viral respiratory infections continues to pose a substantial threat to human health, exacerbating the societal burden. Timely and precise detection of viruses is pivotal in mitigating pandemic transmission. Currently, the prevalent diagnostic techniques for viruses include real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and colloidal gold assays. However, intricate workflows and protracted processing times of RT-qPCR and ELISA preclude real-time diagnostics, despite their high accuracy. Colloidal gold assays offer rapid turnaround. However, their accuracy and sensitivity are limited, particularly in the context of emerging variants like SARS-CoV-2, which renders them suboptimal test tools. Mounting evidence suggests that surface-enhanced Raman spectroscopy (SERS), with its streamlined operation, rapid analysis, high specificity and sensitivity, holds significant potential as a superior alternative test tool. This review consolidates various SERS-based approaches for detecting respiratory infection virus (RIV) and delineates their characteristics. The unique strengths of SERS technology, including its exceptional sensitivity, robust specificity, and expedited turnaround times, earmark it as particularly well-suited for large-scale instant screening of viral infections within populations.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.