{"title":"Cu3N 纳米粒子的合成、表征和电化学尿酸传感特性","authors":"Munusamy Settu , Gnanamoorthy Govindhan , Bavani Thirugnanam , Kumar Kalpana , Majed A. Alotaibi","doi":"10.1016/j.biosx.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the development and applications of a Cu<sub>3</sub>N/GCE-based sensor using differential pulse voltammetry (DPV) for selective uric acid (UA) detection in clinical analysis. The sensor achieves a limit of detection (LOD) of 2.57 × 10<sup>−8</sup> M and a quantification limit (QL) of 8.102 × 10<sup>−8</sup> M, demonstrating its capability to precisely quantify minute UA concentrations. With rapid responsiveness and reusability over 25 days, it offers cost-effective monitoring of UA levels, even in complex sample matrices. Cu<sub>3</sub>N also exhibits high efficiency in degrading methylene blue (MB), achieving 87.7% degradation under optimized conditions, suggesting its potential as a photocatalyst for environmental remediation, particularly in dye degradation processes. Overall, Cu<sub>3</sub>N-based technologies show promise in sensitive UA detection for clinical diagnostics, environmental remediation, and industrial catalysis, highlighting its versatility and broad applicability across scientific and practical domains.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"20 ","pages":"Article 100526"},"PeriodicalIF":10.6100,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000906/pdfft?md5=df93035d48df71e35abde2c63171055c&pid=1-s2.0-S2590137024000906-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis, characterization, and electrochemical uric acid sensing properties of Cu3N nanoparticles\",\"authors\":\"Munusamy Settu , Gnanamoorthy Govindhan , Bavani Thirugnanam , Kumar Kalpana , Majed A. Alotaibi\",\"doi\":\"10.1016/j.biosx.2024.100526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article explores the development and applications of a Cu<sub>3</sub>N/GCE-based sensor using differential pulse voltammetry (DPV) for selective uric acid (UA) detection in clinical analysis. The sensor achieves a limit of detection (LOD) of 2.57 × 10<sup>−8</sup> M and a quantification limit (QL) of 8.102 × 10<sup>−8</sup> M, demonstrating its capability to precisely quantify minute UA concentrations. With rapid responsiveness and reusability over 25 days, it offers cost-effective monitoring of UA levels, even in complex sample matrices. Cu<sub>3</sub>N also exhibits high efficiency in degrading methylene blue (MB), achieving 87.7% degradation under optimized conditions, suggesting its potential as a photocatalyst for environmental remediation, particularly in dye degradation processes. Overall, Cu<sub>3</sub>N-based technologies show promise in sensitive UA detection for clinical diagnostics, environmental remediation, and industrial catalysis, highlighting its versatility and broad applicability across scientific and practical domains.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"20 \",\"pages\":\"Article 100526\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000906/pdfft?md5=df93035d48df71e35abde2c63171055c&pid=1-s2.0-S2590137024000906-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了基于 CuN/GCE 的传感器的开发和应用,该传感器采用差分脉冲伏安法 (DPV),可在临床分析中选择性地检测尿酸 (UA)。该传感器的检测限 (LOD) 为 2.57 × 10 M,定量限 (QL) 为 8.102 × 10 M,证明了其精确定量微量尿酸浓度的能力。它反应迅速,可重复使用 25 天,即使在复杂的样品基质中也能经济高效地监测 UA 含量。CuN 还能高效降解亚甲基蓝 (MB),在优化条件下可实现 87.7% 的降解,这表明它具有作为光催化剂进行环境修复的潜力,特别是在染料降解过程中。总之,基于 CuN 的技术在临床诊断、环境修复和工业催化的灵敏 UA 检测方面显示出前景,突出了它在科学和实用领域的多功能性和广泛适用性。
Synthesis, characterization, and electrochemical uric acid sensing properties of Cu3N nanoparticles
This article explores the development and applications of a Cu3N/GCE-based sensor using differential pulse voltammetry (DPV) for selective uric acid (UA) detection in clinical analysis. The sensor achieves a limit of detection (LOD) of 2.57 × 10−8 M and a quantification limit (QL) of 8.102 × 10−8 M, demonstrating its capability to precisely quantify minute UA concentrations. With rapid responsiveness and reusability over 25 days, it offers cost-effective monitoring of UA levels, even in complex sample matrices. Cu3N also exhibits high efficiency in degrading methylene blue (MB), achieving 87.7% degradation under optimized conditions, suggesting its potential as a photocatalyst for environmental remediation, particularly in dye degradation processes. Overall, Cu3N-based technologies show promise in sensitive UA detection for clinical diagnostics, environmental remediation, and industrial catalysis, highlighting its versatility and broad applicability across scientific and practical domains.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.