Fengxi Zhou , Jinyin Yang , Wentao Ju , Zhixiong Zhou , Qiang Ma
{"title":"冻融循环下硫酸盐盐土的水热盐力学耦合特性研究","authors":"Fengxi Zhou , Jinyin Yang , Wentao Ju , Zhixiong Zhou , Qiang Ma","doi":"10.1016/j.coldregions.2024.104289","DOIUrl":null,"url":null,"abstract":"<div><p>The theoretical and experimental studies have been carried out on the water and salt migration and deformation characteristics of sulfate saline soil during freeze-thaw cycles. Based on the theory of unsaturated soil mechanics and the thermoelastic continuum and considering the influence of phase change within the pore on thermodynamic and hydrodynamic parameters, the multi-physical fields coupled model of hydro-thermal-salt-mechanical in unsaturated sulfate saline soil has been established. The variation processes of the temperature field, water field, salt field, and stress field of the soil during freeze-thaw cycles were analyzed, and the validity of the theoretical model was verified by indoor experiments. The results show that there are significant attenuation and hysteresis effects when heat is transferred in the soil during freeze-thaw cycles. The water content of migration in the soil increases with the height of the soil column, while the increment of migration water content decreases with the number of freeze-thaw cycles. The formation and dissolution of salt crystals from top to bottom and the sudden increase in the salt crystallization rate are mainly caused by variations in the solubility of the salt solutions due to temperature changes. The formation and dissolution of ice and salt crystals in the soil induce expansion and contraction, and the freeze-thaw cycle conditions have a significant effect on the expansion and residual deformation of the soil.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"226 ","pages":"Article 104289"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the hydro-thermal-salt-mechanical coupling characteristics of sulfate saline soil under freeze-thaw cycles\",\"authors\":\"Fengxi Zhou , Jinyin Yang , Wentao Ju , Zhixiong Zhou , Qiang Ma\",\"doi\":\"10.1016/j.coldregions.2024.104289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The theoretical and experimental studies have been carried out on the water and salt migration and deformation characteristics of sulfate saline soil during freeze-thaw cycles. Based on the theory of unsaturated soil mechanics and the thermoelastic continuum and considering the influence of phase change within the pore on thermodynamic and hydrodynamic parameters, the multi-physical fields coupled model of hydro-thermal-salt-mechanical in unsaturated sulfate saline soil has been established. The variation processes of the temperature field, water field, salt field, and stress field of the soil during freeze-thaw cycles were analyzed, and the validity of the theoretical model was verified by indoor experiments. The results show that there are significant attenuation and hysteresis effects when heat is transferred in the soil during freeze-thaw cycles. The water content of migration in the soil increases with the height of the soil column, while the increment of migration water content decreases with the number of freeze-thaw cycles. The formation and dissolution of salt crystals from top to bottom and the sudden increase in the salt crystallization rate are mainly caused by variations in the solubility of the salt solutions due to temperature changes. The formation and dissolution of ice and salt crystals in the soil induce expansion and contraction, and the freeze-thaw cycle conditions have a significant effect on the expansion and residual deformation of the soil.</p></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"226 \",\"pages\":\"Article 104289\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24001708\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001708","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Study on the hydro-thermal-salt-mechanical coupling characteristics of sulfate saline soil under freeze-thaw cycles
The theoretical and experimental studies have been carried out on the water and salt migration and deformation characteristics of sulfate saline soil during freeze-thaw cycles. Based on the theory of unsaturated soil mechanics and the thermoelastic continuum and considering the influence of phase change within the pore on thermodynamic and hydrodynamic parameters, the multi-physical fields coupled model of hydro-thermal-salt-mechanical in unsaturated sulfate saline soil has been established. The variation processes of the temperature field, water field, salt field, and stress field of the soil during freeze-thaw cycles were analyzed, and the validity of the theoretical model was verified by indoor experiments. The results show that there are significant attenuation and hysteresis effects when heat is transferred in the soil during freeze-thaw cycles. The water content of migration in the soil increases with the height of the soil column, while the increment of migration water content decreases with the number of freeze-thaw cycles. The formation and dissolution of salt crystals from top to bottom and the sudden increase in the salt crystallization rate are mainly caused by variations in the solubility of the salt solutions due to temperature changes. The formation and dissolution of ice and salt crystals in the soil induce expansion and contraction, and the freeze-thaw cycle conditions have a significant effect on the expansion and residual deformation of the soil.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.