Carlos Matos, Simão Santos, Isabel Duarte, Susana M Olhero, Georgina Miranda
{"title":"深入了解构架互穿氧化铝复合材料的形态和机械性能","authors":"Carlos Matos, Simão Santos, Isabel Duarte, Susana M Olhero, Georgina Miranda","doi":"10.1177/00219983241271054","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) technologies are unleashing the restrictions imposed by conventional manufacturing, allowing the production of innovative designs tailored to improve properties or performance. AM techniques in ceramic production allow the application of novel designs to ceramic parts, opening new opportunities for combining technologies aiming to obtain architected interpenetrating phase composites (IPCs). In this study, alumina structures with different architectures and Computer Aided Design (CAD) structure porosity oriented unidirectionally or bidirectionally, were fabricated by vat photopolymerization technique, namely Digital Light Processing. Afterwards, these structures were infiltrated with an aluminum alloy through investment casting, thus obtaining aluminum-alumina IPCs. Under compression, the IPCs presented a ductile behavior, conversely to the fragile ceramic counterparts. The IPCs compressive strength and absorbed energy were expressively higher than their ceramic counterparts. Comparing the bidirectional IPCs with the unidirectional ones, a significant increase in compressive strength and absorbed energy was observed, from 36.2% to 42.3% and from 164.8% to 358.1%, respectively, due to the greater amount and interconnection of the metal inside the ceramic structure. This study demonstrates the feasibility of this manufacturing route, combining two distinctive technologies, for the fabrication of metal-ceramic architected IPCs, allowing to tailor their mechanical properties and energy absorption capacity for a given application.","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"193 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into morphology and mechanical properties of architected interpenetrating aluminum-alumina composites\",\"authors\":\"Carlos Matos, Simão Santos, Isabel Duarte, Susana M Olhero, Georgina Miranda\",\"doi\":\"10.1177/00219983241271054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) technologies are unleashing the restrictions imposed by conventional manufacturing, allowing the production of innovative designs tailored to improve properties or performance. AM techniques in ceramic production allow the application of novel designs to ceramic parts, opening new opportunities for combining technologies aiming to obtain architected interpenetrating phase composites (IPCs). In this study, alumina structures with different architectures and Computer Aided Design (CAD) structure porosity oriented unidirectionally or bidirectionally, were fabricated by vat photopolymerization technique, namely Digital Light Processing. Afterwards, these structures were infiltrated with an aluminum alloy through investment casting, thus obtaining aluminum-alumina IPCs. Under compression, the IPCs presented a ductile behavior, conversely to the fragile ceramic counterparts. The IPCs compressive strength and absorbed energy were expressively higher than their ceramic counterparts. Comparing the bidirectional IPCs with the unidirectional ones, a significant increase in compressive strength and absorbed energy was observed, from 36.2% to 42.3% and from 164.8% to 358.1%, respectively, due to the greater amount and interconnection of the metal inside the ceramic structure. This study demonstrates the feasibility of this manufacturing route, combining two distinctive technologies, for the fabrication of metal-ceramic architected IPCs, allowing to tailor their mechanical properties and energy absorption capacity for a given application.\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241271054\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241271054","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Insights into morphology and mechanical properties of architected interpenetrating aluminum-alumina composites
Additive manufacturing (AM) technologies are unleashing the restrictions imposed by conventional manufacturing, allowing the production of innovative designs tailored to improve properties or performance. AM techniques in ceramic production allow the application of novel designs to ceramic parts, opening new opportunities for combining technologies aiming to obtain architected interpenetrating phase composites (IPCs). In this study, alumina structures with different architectures and Computer Aided Design (CAD) structure porosity oriented unidirectionally or bidirectionally, were fabricated by vat photopolymerization technique, namely Digital Light Processing. Afterwards, these structures were infiltrated with an aluminum alloy through investment casting, thus obtaining aluminum-alumina IPCs. Under compression, the IPCs presented a ductile behavior, conversely to the fragile ceramic counterparts. The IPCs compressive strength and absorbed energy were expressively higher than their ceramic counterparts. Comparing the bidirectional IPCs with the unidirectional ones, a significant increase in compressive strength and absorbed energy was observed, from 36.2% to 42.3% and from 164.8% to 358.1%, respectively, due to the greater amount and interconnection of the metal inside the ceramic structure. This study demonstrates the feasibility of this manufacturing route, combining two distinctive technologies, for the fabrication of metal-ceramic architected IPCs, allowing to tailor their mechanical properties and energy absorption capacity for a given application.
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).