漂白剂从 WiFi 探测请求签名到 MAC 关联

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Ad Hoc Networks Pub Date : 2024-08-03 DOI:10.1016/j.adhoc.2024.103623
{"title":"漂白剂从 WiFi 探测请求签名到 MAC 关联","authors":"","doi":"10.1016/j.adhoc.2024.103623","DOIUrl":null,"url":null,"abstract":"<div><p>Smartphones or similar WiFi-enabled devices regularly discover nearby access points by broadcasting management frames known as probe-requests. Probe-request frames relay, as information, the MAC addresses of sending devices, which act as the device identifiers. To protect the user’s privacy and location, probe-requests use a randomized MAC address generated according to the MAC address randomization protocol. Unfortunately, MAC randomization greatly limits any studies on trajectory inference, flow estimation, crowd counting, etc. To overcome this limitation while respecting users’ privacy, we propose <span>Bleach</span>, a novel, efficient, and comprehensive approach allowing randomized MAC addresses to device association from probe-requests. <span>Bleach</span> models the frame association as a resolution of MAC conflicts in small time intervals. We use time and frame content-based signatures to resolve and associate MACs inside a conflict. We propose a novel MAC association algorithm involving logistic regression using signatures and our introduced time metric. To the best of our knowledge, this is the first work that formulates the probe-request association problem as a generic resolution of conflicts and benchmarks the association concerning several datasets. Our results show that <span>Bleach</span> outperforms the state-of-the-art schemes in terms of accuracy (as high as 99%) and robustness to a wide range of input probe-request datasets.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570870524002348/pdfft?md5=02e4cd50b7a3e4de4614a97c87b80c13&pid=1-s2.0-S1570870524002348-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bleach: From WiFi probe-request signatures to MAC association\",\"authors\":\"\",\"doi\":\"10.1016/j.adhoc.2024.103623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Smartphones or similar WiFi-enabled devices regularly discover nearby access points by broadcasting management frames known as probe-requests. Probe-request frames relay, as information, the MAC addresses of sending devices, which act as the device identifiers. To protect the user’s privacy and location, probe-requests use a randomized MAC address generated according to the MAC address randomization protocol. Unfortunately, MAC randomization greatly limits any studies on trajectory inference, flow estimation, crowd counting, etc. To overcome this limitation while respecting users’ privacy, we propose <span>Bleach</span>, a novel, efficient, and comprehensive approach allowing randomized MAC addresses to device association from probe-requests. <span>Bleach</span> models the frame association as a resolution of MAC conflicts in small time intervals. We use time and frame content-based signatures to resolve and associate MACs inside a conflict. We propose a novel MAC association algorithm involving logistic regression using signatures and our introduced time metric. To the best of our knowledge, this is the first work that formulates the probe-request association problem as a generic resolution of conflicts and benchmarks the association concerning several datasets. Our results show that <span>Bleach</span> outperforms the state-of-the-art schemes in terms of accuracy (as high as 99%) and robustness to a wide range of input probe-request datasets.</p></div>\",\"PeriodicalId\":55555,\"journal\":{\"name\":\"Ad Hoc Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002348/pdfft?md5=02e4cd50b7a3e4de4614a97c87b80c13&pid=1-s2.0-S1570870524002348-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ad Hoc Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570870524002348\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002348","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

智能手机或类似的 WiFi 设备会定期通过广播管理帧(即探针请求)来发现附近的接入点。探测请求帧转发发送设备的 MAC 地址(作为设备标识符)作为信息。为了保护用户的隐私和位置,探测请求使用根据 MAC 地址随机化协议生成的随机 MAC 地址。遗憾的是,MAC 随机化极大地限制了有关轨迹推断、流量估计、人群计数等方面的研究。为了在尊重用户隐私的同时克服这一限制,我们提出了一种新颖、高效、全面的方法,允许随机 MAC 地址与探测请求中的设备关联。我们使用基于时间和帧内容的签名来解决和关联冲突中的 MAC。我们提出了一种新颖的 MAC 关联算法,该算法涉及使用签名和我们引入的时间度量的逻辑回归。据我们所知,这是第一项将探针-请求关联问题表述为通用冲突解决方法的研究,并对多个数据集的关联进行了基准测试。我们的研究结果表明,就准确率(高达 99%)和对各种输入探针请求数据集的鲁棒性而言,我们的方案优于最先进的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bleach: From WiFi probe-request signatures to MAC association

Smartphones or similar WiFi-enabled devices regularly discover nearby access points by broadcasting management frames known as probe-requests. Probe-request frames relay, as information, the MAC addresses of sending devices, which act as the device identifiers. To protect the user’s privacy and location, probe-requests use a randomized MAC address generated according to the MAC address randomization protocol. Unfortunately, MAC randomization greatly limits any studies on trajectory inference, flow estimation, crowd counting, etc. To overcome this limitation while respecting users’ privacy, we propose Bleach, a novel, efficient, and comprehensive approach allowing randomized MAC addresses to device association from probe-requests. Bleach models the frame association as a resolution of MAC conflicts in small time intervals. We use time and frame content-based signatures to resolve and associate MACs inside a conflict. We propose a novel MAC association algorithm involving logistic regression using signatures and our introduced time metric. To the best of our knowledge, this is the first work that formulates the probe-request association problem as a generic resolution of conflicts and benchmarks the association concerning several datasets. Our results show that Bleach outperforms the state-of-the-art schemes in terms of accuracy (as high as 99%) and robustness to a wide range of input probe-request datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
期刊最新文献
TAVA: Traceable anonymity-self-controllable V2X Authentication over dynamic multiple charging-service providers RL-based mobile edge computing scheme for high reliability low latency services in UAV-aided IIoT networks Editorial Board PLLM-CS: Pre-trained Large Language Model (LLM) for cyber threat detection in satellite networks A two-context-aware approach for navigation: A case study for vehicular route recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1