Laurent Keirsbulck , Olivier Cadot , Marc Lippert , David Boussemart , Jérémy Basley , Sébastien Delprat , Sébastien Paganelli
{"title":"车底流量控制,减少实车模型的基本阻力","authors":"Laurent Keirsbulck , Olivier Cadot , Marc Lippert , David Boussemart , Jérémy Basley , Sébastien Delprat , Sébastien Paganelli","doi":"10.1016/j.jweia.2024.105822","DOIUrl":null,"url":null,"abstract":"<div><p>A 1:5 scale realistic car model of the original Twingo GT but presenting a flat underbody and no exhaust line is tested in a wind tunnel at Reynolds numbers <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>. A range of underbody flow characteristic velocities <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>72</mn></mrow></mfenced><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> (<span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> the free-stream velocity) is obtained by two techniques: flow obstruction and low momentum injection. Force balance, pressure measurements and Particle Image Velocimetry are used to characterize the aerodynamics of the model while changing the underbody flow velocity. A very sharp transition in the wake is found at a critical underbody velocity <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span>. It corresponds to a sudden wake reversal with a bistable behavior between 2 equilibrium states, N or P depending on the vertical base pressure gradient or the wake orientation. The drag of the N state is larger than that of the P state. The control of the wake state by reducing the underbody flow velocity leads to beneficial increase of the base suction of approximately 20% when selecting the P state compared to the N state. The low momentum injection technique reduces drag by 10% but is ineffective at yaws 5° and 10°, while the obstruction technique consistently increases base suction but induces additional drag.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"252 ","pages":"Article 105822"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underbody flow control for base drag reduction of a real car model\",\"authors\":\"Laurent Keirsbulck , Olivier Cadot , Marc Lippert , David Boussemart , Jérémy Basley , Sébastien Delprat , Sébastien Paganelli\",\"doi\":\"10.1016/j.jweia.2024.105822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A 1:5 scale realistic car model of the original Twingo GT but presenting a flat underbody and no exhaust line is tested in a wind tunnel at Reynolds numbers <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>2</mn><mo>.</mo><mn>15</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mn>4</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>. A range of underbody flow characteristic velocities <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mfenced><mrow><mn>0</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>0</mn><mo>.</mo><mn>72</mn></mrow></mfenced><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> (<span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> the free-stream velocity) is obtained by two techniques: flow obstruction and low momentum injection. Force balance, pressure measurements and Particle Image Velocimetry are used to characterize the aerodynamics of the model while changing the underbody flow velocity. A very sharp transition in the wake is found at a critical underbody velocity <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>b</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>65</mn><msub><mrow><mi>U</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span>. It corresponds to a sudden wake reversal with a bistable behavior between 2 equilibrium states, N or P depending on the vertical base pressure gradient or the wake orientation. The drag of the N state is larger than that of the P state. The control of the wake state by reducing the underbody flow velocity leads to beneficial increase of the base suction of approximately 20% when selecting the P state compared to the N state. The low momentum injection technique reduces drag by 10% but is ineffective at yaws 5° and 10°, while the obstruction technique consistently increases base suction but induces additional drag.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"252 \",\"pages\":\"Article 105822\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524001855\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524001855","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
摘要
在雷诺数为......的风洞中测试了原版 Twingo GT 的 1:5 比例仿真汽车模型,该模型车底平坦,没有排气管道。通过阻流和低动量喷射两种技术获得了一系列车底流动特征速度(自由流速度)。力平衡、压力测量和粒子图像测速仪用于描述模型的空气动力学特性,同时改变机身下部的流速。在一个临界底部速度处,发现尾流有一个非常急剧的转变。根据垂直基础压力梯度或尾流方向的不同,尾流在 N 或 P 两种平衡状态之间呈现双稳态。N 状态的阻力大于 P 状态的阻力。与 N 状态相比,通过降低机身底部流速来控制尾流状态可使选择 P 状态时的基底吸力增加约 20%。低动量喷射技术可减少 10% 的阻力,但在偏航 5° 和 10° 时无效,而阻塞技术可持续增加基础吸力,但会引起额外的阻力。
Underbody flow control for base drag reduction of a real car model
A 1:5 scale realistic car model of the original Twingo GT but presenting a flat underbody and no exhaust line is tested in a wind tunnel at Reynolds numbers to . A range of underbody flow characteristic velocities ( the free-stream velocity) is obtained by two techniques: flow obstruction and low momentum injection. Force balance, pressure measurements and Particle Image Velocimetry are used to characterize the aerodynamics of the model while changing the underbody flow velocity. A very sharp transition in the wake is found at a critical underbody velocity . It corresponds to a sudden wake reversal with a bistable behavior between 2 equilibrium states, N or P depending on the vertical base pressure gradient or the wake orientation. The drag of the N state is larger than that of the P state. The control of the wake state by reducing the underbody flow velocity leads to beneficial increase of the base suction of approximately 20% when selecting the P state compared to the N state. The low momentum injection technique reduces drag by 10% but is ineffective at yaws 5° and 10°, while the obstruction technique consistently increases base suction but induces additional drag.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.