{"title":"从消费品到室内外环境--从生产到报废--氟代醇的化学转化、暴露评估和政策影响","authors":"Ivan A. Titaley","doi":"10.1039/D4VA00019F","DOIUrl":null,"url":null,"abstract":"<p >Fluorotelomer (FT) alcohols (FTOHs) belong to the subclass of per- and polyfluoroalkyl substances (PFAS) and are used as building blocks of FT-based side chain fluorinated polymers (SCFPs), which are applied to consumer products to provide hydro- and oleophobic characteristics. FTOHs are consistently detected in consumer products, indicating FTOHs as major degradation products of FT-based SCFPs. Literature on FTOHs indicates that much is known about the release of FTOHs during the production, throughout the lifetime, and at the end-of-life of consumer products. This Perspective combines information from FTOHs in consumer products with sufficient knowledge on FTOH volatility, partitioning to the gas phase, and transformation to perfluorocarboxylates (PFCAs) to understand the extent of FTOH release to the environment. In the indoor environment, FTOHs are released in textile factories to the air during the production of consumer products, indicating a potential inhalation risk for the workers. Meanwhile, indoor air FTOH levels at residential sites are estimated to pose low inhalation risk to humans based on studies of 8:2 FTOH, which is known to undergo human metabolism to perfluorooctanoate (PFOA). Release of FTOHs from FT-based SCFP-applied consumer products to the indoor environment throughout the lifetime of the products is known, as well as release to the outdoor environment through washing, weathering, or drying. At the end-of-life of consumer products, FTOHs are released to air from landfills and can be detected in biosolids. Future policies need to not only account for FTOH presence in consumer products, but also the known FTOH volatility, partitioning to the gas phase, and transformation to PFCAs.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00019f?page=search","citationCount":"0","resultStr":"{\"title\":\"Chemical transformation, exposure assessment, and policy implications of fluorotelomer alcohol partitioning from consumer products to the indoor and outdoor environment—from production to end-of-life\",\"authors\":\"Ivan A. Titaley\",\"doi\":\"10.1039/D4VA00019F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Fluorotelomer (FT) alcohols (FTOHs) belong to the subclass of per- and polyfluoroalkyl substances (PFAS) and are used as building blocks of FT-based side chain fluorinated polymers (SCFPs), which are applied to consumer products to provide hydro- and oleophobic characteristics. FTOHs are consistently detected in consumer products, indicating FTOHs as major degradation products of FT-based SCFPs. Literature on FTOHs indicates that much is known about the release of FTOHs during the production, throughout the lifetime, and at the end-of-life of consumer products. This Perspective combines information from FTOHs in consumer products with sufficient knowledge on FTOH volatility, partitioning to the gas phase, and transformation to perfluorocarboxylates (PFCAs) to understand the extent of FTOH release to the environment. In the indoor environment, FTOHs are released in textile factories to the air during the production of consumer products, indicating a potential inhalation risk for the workers. Meanwhile, indoor air FTOH levels at residential sites are estimated to pose low inhalation risk to humans based on studies of 8:2 FTOH, which is known to undergo human metabolism to perfluorooctanoate (PFOA). Release of FTOHs from FT-based SCFP-applied consumer products to the indoor environment throughout the lifetime of the products is known, as well as release to the outdoor environment through washing, weathering, or drying. At the end-of-life of consumer products, FTOHs are released to air from landfills and can be detected in biosolids. Future policies need to not only account for FTOH presence in consumer products, but also the known FTOH volatility, partitioning to the gas phase, and transformation to PFCAs.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00019f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00019f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00019f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Chemical transformation, exposure assessment, and policy implications of fluorotelomer alcohol partitioning from consumer products to the indoor and outdoor environment—from production to end-of-life
Fluorotelomer (FT) alcohols (FTOHs) belong to the subclass of per- and polyfluoroalkyl substances (PFAS) and are used as building blocks of FT-based side chain fluorinated polymers (SCFPs), which are applied to consumer products to provide hydro- and oleophobic characteristics. FTOHs are consistently detected in consumer products, indicating FTOHs as major degradation products of FT-based SCFPs. Literature on FTOHs indicates that much is known about the release of FTOHs during the production, throughout the lifetime, and at the end-of-life of consumer products. This Perspective combines information from FTOHs in consumer products with sufficient knowledge on FTOH volatility, partitioning to the gas phase, and transformation to perfluorocarboxylates (PFCAs) to understand the extent of FTOH release to the environment. In the indoor environment, FTOHs are released in textile factories to the air during the production of consumer products, indicating a potential inhalation risk for the workers. Meanwhile, indoor air FTOH levels at residential sites are estimated to pose low inhalation risk to humans based on studies of 8:2 FTOH, which is known to undergo human metabolism to perfluorooctanoate (PFOA). Release of FTOHs from FT-based SCFP-applied consumer products to the indoor environment throughout the lifetime of the products is known, as well as release to the outdoor environment through washing, weathering, or drying. At the end-of-life of consumer products, FTOHs are released to air from landfills and can be detected in biosolids. Future policies need to not only account for FTOH presence in consumer products, but also the known FTOH volatility, partitioning to the gas phase, and transformation to PFCAs.