Carlos Rodríguez-Casado , Eva Martínez-García , Raúl Manzanares-Bercial , José Luis Ruiz-Moral , Eduardo Blanco-Marigorta , Antonio Navarro-Manso
{"title":"单轴太阳能跟踪器扭转气动弹性不稳定性三维风洞试验基准","authors":"Carlos Rodríguez-Casado , Eva Martínez-García , Raúl Manzanares-Bercial , José Luis Ruiz-Moral , Eduardo Blanco-Marigorta , Antonio Navarro-Manso","doi":"10.1016/j.jweia.2024.105838","DOIUrl":null,"url":null,"abstract":"<div><p>Wind-excited torsional oscillation of photovoltaic single-axis solar trackers constitutes a class of complex fluid-structure interaction phenomena, involving torsional galloping, torsional divergence, 1DOF flutter, VIV and buffeting. The highest potential for structural damage corresponds to torsional aero-elastic instability, which develops when wind speed exceeds a critical value that, for a given tracker, depends on tilt. Current engineering standards do not offer reliable criteria to yield safe operation conditions, therefore each case requires specific wind tunnel testing. Since data reported in the literature are scarce and scattered, from both industry and academia there is a growing need to define a Benchmark as a reference to compare results and validate methodologies of different studies. This paper proposes a tracker model with 3D aeroelastic characteristics, both torsion and bending, appropriate for wind tunnel testing, including geometry, mounting details, experimental methodology and critical velocity criterion. Tracker units built according to this model were tested in two different wind tunnels (at Polytechnic University of Madrid and University of Oviedo), and the respective measurements show good agreement. The reported results include stability maps with comparison to literature data, an evaluation of the phenomena identified, and the effects of the tracker relative position in a row.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"253 ","pages":"Article 105838"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Benchmark for the 3D wind tunnel testing of torsional aeroelastic instabilities in single-axis solar trackers\",\"authors\":\"Carlos Rodríguez-Casado , Eva Martínez-García , Raúl Manzanares-Bercial , José Luis Ruiz-Moral , Eduardo Blanco-Marigorta , Antonio Navarro-Manso\",\"doi\":\"10.1016/j.jweia.2024.105838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wind-excited torsional oscillation of photovoltaic single-axis solar trackers constitutes a class of complex fluid-structure interaction phenomena, involving torsional galloping, torsional divergence, 1DOF flutter, VIV and buffeting. The highest potential for structural damage corresponds to torsional aero-elastic instability, which develops when wind speed exceeds a critical value that, for a given tracker, depends on tilt. Current engineering standards do not offer reliable criteria to yield safe operation conditions, therefore each case requires specific wind tunnel testing. Since data reported in the literature are scarce and scattered, from both industry and academia there is a growing need to define a Benchmark as a reference to compare results and validate methodologies of different studies. This paper proposes a tracker model with 3D aeroelastic characteristics, both torsion and bending, appropriate for wind tunnel testing, including geometry, mounting details, experimental methodology and critical velocity criterion. Tracker units built according to this model were tested in two different wind tunnels (at Polytechnic University of Madrid and University of Oviedo), and the respective measurements show good agreement. The reported results include stability maps with comparison to literature data, an evaluation of the phenomena identified, and the effects of the tracker relative position in a row.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"253 \",\"pages\":\"Article 105838\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002010\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002010","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental Benchmark for the 3D wind tunnel testing of torsional aeroelastic instabilities in single-axis solar trackers
Wind-excited torsional oscillation of photovoltaic single-axis solar trackers constitutes a class of complex fluid-structure interaction phenomena, involving torsional galloping, torsional divergence, 1DOF flutter, VIV and buffeting. The highest potential for structural damage corresponds to torsional aero-elastic instability, which develops when wind speed exceeds a critical value that, for a given tracker, depends on tilt. Current engineering standards do not offer reliable criteria to yield safe operation conditions, therefore each case requires specific wind tunnel testing. Since data reported in the literature are scarce and scattered, from both industry and academia there is a growing need to define a Benchmark as a reference to compare results and validate methodologies of different studies. This paper proposes a tracker model with 3D aeroelastic characteristics, both torsion and bending, appropriate for wind tunnel testing, including geometry, mounting details, experimental methodology and critical velocity criterion. Tracker units built according to this model were tested in two different wind tunnels (at Polytechnic University of Madrid and University of Oviedo), and the respective measurements show good agreement. The reported results include stability maps with comparison to literature data, an evaluation of the phenomena identified, and the effects of the tracker relative position in a row.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.