{"title":"受涡流诱导振动的公路车辆与桥面之间的空气动力干扰","authors":"Hao-Yang Li , You-Lin Xu , Le-Dong Zhu , Guo-Qing Zhang , Bo-Man Cheng","doi":"10.1016/j.jweia.2024.105845","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate assessment of the driving comfort and safety of road vehicles moving on a long-span bridge subjected to vortex-induced vibration (VIV) is essential for bridge administrators to decide whether the bridge should be closed to traffic. However, previous assessments often ignore the aerodynamic interference between the road vehicles and the bridge deck subjected to VIV. In this study, a specific wind tunnel model is developed to explore the aerodynamic interference between road vehicles and twin-box bridge deck during VIV. The vortex-induced force (VIF) and vortex-induced response (VIR) of the twin-box bridge deck and the aerodynamic forces on the vehicle were simultaneously measured. The influence of the vehicles on the VIV of the deck was investigated, and the influence of the deck vibration on the aerodynamic forces of the vehicle was also explored. The results show that the VIR and VIF of the bridge deck were generally reduced, depending on the type, position, and number of vehicles. The aerodynamic forces of vehicles could be amplified due to the deck vibration. These findings supplement the database of vehicle aerodynamic coefficients for assessing the driving comfort and safety of road vehicles moving on a long-span bridge subjected to VIV.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"252 ","pages":"Article 105845"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic interference between road vehicles and bridge deck subjected to vortex-induced vibration\",\"authors\":\"Hao-Yang Li , You-Lin Xu , Le-Dong Zhu , Guo-Qing Zhang , Bo-Man Cheng\",\"doi\":\"10.1016/j.jweia.2024.105845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate assessment of the driving comfort and safety of road vehicles moving on a long-span bridge subjected to vortex-induced vibration (VIV) is essential for bridge administrators to decide whether the bridge should be closed to traffic. However, previous assessments often ignore the aerodynamic interference between the road vehicles and the bridge deck subjected to VIV. In this study, a specific wind tunnel model is developed to explore the aerodynamic interference between road vehicles and twin-box bridge deck during VIV. The vortex-induced force (VIF) and vortex-induced response (VIR) of the twin-box bridge deck and the aerodynamic forces on the vehicle were simultaneously measured. The influence of the vehicles on the VIV of the deck was investigated, and the influence of the deck vibration on the aerodynamic forces of the vehicle was also explored. The results show that the VIR and VIF of the bridge deck were generally reduced, depending on the type, position, and number of vehicles. The aerodynamic forces of vehicles could be amplified due to the deck vibration. These findings supplement the database of vehicle aerodynamic coefficients for assessing the driving comfort and safety of road vehicles moving on a long-span bridge subjected to VIV.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"252 \",\"pages\":\"Article 105845\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524002083\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524002083","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Aerodynamic interference between road vehicles and bridge deck subjected to vortex-induced vibration
An accurate assessment of the driving comfort and safety of road vehicles moving on a long-span bridge subjected to vortex-induced vibration (VIV) is essential for bridge administrators to decide whether the bridge should be closed to traffic. However, previous assessments often ignore the aerodynamic interference between the road vehicles and the bridge deck subjected to VIV. In this study, a specific wind tunnel model is developed to explore the aerodynamic interference between road vehicles and twin-box bridge deck during VIV. The vortex-induced force (VIF) and vortex-induced response (VIR) of the twin-box bridge deck and the aerodynamic forces on the vehicle were simultaneously measured. The influence of the vehicles on the VIV of the deck was investigated, and the influence of the deck vibration on the aerodynamic forces of the vehicle was also explored. The results show that the VIR and VIF of the bridge deck were generally reduced, depending on the type, position, and number of vehicles. The aerodynamic forces of vehicles could be amplified due to the deck vibration. These findings supplement the database of vehicle aerodynamic coefficients for assessing the driving comfort and safety of road vehicles moving on a long-span bridge subjected to VIV.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.