{"title":"成对反向旋转垂直轴风力涡轮机的尾流补充机制实验研究","authors":"Ayoub Talamalek, Mark C. Runacres, Tim De Troyer","doi":"10.1016/j.jweia.2024.105830","DOIUrl":null,"url":null,"abstract":"<div><p>The understanding of wake recovery mechanisms is crucial for the design of efficient wind farm layouts and the development of accurate wake models. Recently, placing two vertical-axis wind turbines (VAWTs) in close proximity has demonstrated potential for increased power output. In this study, wind tunnel experiments were conducted to investigate the wake replenishment mechanisms behind paired VAWTs. The experimental campaign included testing an isolated VAWT and paired counter-rotating VAWTs. By combining qualitative observations of key flow field variables with a quantitative analysis based on momentum conservation, this study aims to enhance our understanding of the mixing mechanisms supporting the reintroduction of streamwise momentum into the wake of paired VAWTs. This research also involves a comparison of these mechanisms with those observed in the wake of a standalone VAWT. The results show that the differences between isolated and paired VAWTs in overall wake characteristics are minimal. The increased lateral advection within the wake of the isolated VAWT is offset by the enhanced vertical advection in the paired configuration, as a result of the change in the direction of cross-stream velocity within the gap between the paired VAWTs, which promotes a shift towards vertical flow rather than lateral flow.</p></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"252 ","pages":"Article 105830"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the wake replenishment mechanisms of paired counter-rotating vertical-axis wind turbines\",\"authors\":\"Ayoub Talamalek, Mark C. Runacres, Tim De Troyer\",\"doi\":\"10.1016/j.jweia.2024.105830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The understanding of wake recovery mechanisms is crucial for the design of efficient wind farm layouts and the development of accurate wake models. Recently, placing two vertical-axis wind turbines (VAWTs) in close proximity has demonstrated potential for increased power output. In this study, wind tunnel experiments were conducted to investigate the wake replenishment mechanisms behind paired VAWTs. The experimental campaign included testing an isolated VAWT and paired counter-rotating VAWTs. By combining qualitative observations of key flow field variables with a quantitative analysis based on momentum conservation, this study aims to enhance our understanding of the mixing mechanisms supporting the reintroduction of streamwise momentum into the wake of paired VAWTs. This research also involves a comparison of these mechanisms with those observed in the wake of a standalone VAWT. The results show that the differences between isolated and paired VAWTs in overall wake characteristics are minimal. The increased lateral advection within the wake of the isolated VAWT is offset by the enhanced vertical advection in the paired configuration, as a result of the change in the direction of cross-stream velocity within the gap between the paired VAWTs, which promotes a shift towards vertical flow rather than lateral flow.</p></div>\",\"PeriodicalId\":54752,\"journal\":{\"name\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"volume\":\"252 \",\"pages\":\"Article 105830\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wind Engineering and Industrial Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167610524001934\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610524001934","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental investigation of the wake replenishment mechanisms of paired counter-rotating vertical-axis wind turbines
The understanding of wake recovery mechanisms is crucial for the design of efficient wind farm layouts and the development of accurate wake models. Recently, placing two vertical-axis wind turbines (VAWTs) in close proximity has demonstrated potential for increased power output. In this study, wind tunnel experiments were conducted to investigate the wake replenishment mechanisms behind paired VAWTs. The experimental campaign included testing an isolated VAWT and paired counter-rotating VAWTs. By combining qualitative observations of key flow field variables with a quantitative analysis based on momentum conservation, this study aims to enhance our understanding of the mixing mechanisms supporting the reintroduction of streamwise momentum into the wake of paired VAWTs. This research also involves a comparison of these mechanisms with those observed in the wake of a standalone VAWT. The results show that the differences between isolated and paired VAWTs in overall wake characteristics are minimal. The increased lateral advection within the wake of the isolated VAWT is offset by the enhanced vertical advection in the paired configuration, as a result of the change in the direction of cross-stream velocity within the gap between the paired VAWTs, which promotes a shift towards vertical flow rather than lateral flow.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.