Yan Chen, Mingcong Yang, Wei Hu, Tao Chen, Jun Li, Shun Wang, Huile Jin, Jichang Wang
{"title":"定制用于可充电高性能全固态锂电池的阴极有机硫化物外围脂肪族基团","authors":"Yan Chen, Mingcong Yang, Wei Hu, Tao Chen, Jun Li, Shun Wang, Huile Jin, Jichang Wang","doi":"10.1002/eem2.12819","DOIUrl":null,"url":null,"abstract":"Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate's superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery\",\"authors\":\"Yan Chen, Mingcong Yang, Wei Hu, Tao Chen, Jun Li, Shun Wang, Huile Jin, Jichang Wang\",\"doi\":\"10.1002/eem2.12819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate's superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/eem2.12819\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12819","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tailoring the Periphery Aliphatic Group of Cathode Organosulfide for Rechargeable High-Performance All-Solid-State Lithium Battery
Organic cathode materials exhibit higher energy storage capacity, their poor cyclability due to dissolution in liquid organic electrolytes remains a challenge. However, recently, the electrochemical behavior of organopolysulfides incorporating N-heterocycles unveils promising cathode materials with stable cycling performance. Herein, the integration of organosulfides salt as cathodes with solid electrolytes, exemplified by sodium allyl(methyl)carbamodithioate and sodium diethylcarbamodithioate with a polymer solid electrolyte of polyethylene oxide and LiTFSI, addresses the poor electrochemical stability of organic electrodes. Comparative analysis highlights sodium allyl(methyl)carbamodithioate's superior electrochemical performance and stability compared with sodium diethylcarbamodithioate, emphasizing the efficacy of periphery aliphatic modification in enhancing electrode capacity, rate performance, and electrochemical stability for organosulfide materials within all-solid-state lithium organic batteries. We also explore the origin of periphery aliphatic modification in these enhancing electrochemical performances by kinetic analysis and thermodynamic analysis. Furthermore, employing density functional theory calculations and ex situ FTIR experiments elucidates the critical role of the N–C=S structure in the energy storage mechanism. This research advances organic cathode design within organosulfide materials, unlocking the potential of all-solid-state lithium organic batteries with enhanced cyclability, propelling the development of next-generation energy storage systems.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.