关于宇宙学参数估计的边际和剖面后验

Martin Kerscher, Jochen Weller
{"title":"关于宇宙学参数估计的边际和剖面后验","authors":"Martin Kerscher, Jochen Weller","doi":"arxiv-2408.02063","DOIUrl":null,"url":null,"abstract":"With several examples and in an analysis of the Pantheon+ supernova sample we\ndiscuss the properties of the marginal posterior distribution versus the\nprofiled posterior distribution -- the profile likelihood in a Bayesian\ndisguise. We investigate whether maximisation, as used for the profiling, or\nintegration, as used for the marginalisation, is more appropriate. To report\nresults we recommend the marginal posterior distribution.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On marginals and profiled posteriors for cosmological parameter estimation\",\"authors\":\"Martin Kerscher, Jochen Weller\",\"doi\":\"arxiv-2408.02063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With several examples and in an analysis of the Pantheon+ supernova sample we\\ndiscuss the properties of the marginal posterior distribution versus the\\nprofiled posterior distribution -- the profile likelihood in a Bayesian\\ndisguise. We investigate whether maximisation, as used for the profiling, or\\nintegration, as used for the marginalisation, is more appropriate. To report\\nresults we recommend the marginal posterior distribution.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过几个例子和对Pantheon+超新星样本的分析,我们讨论了边际后验分布与剖面后验分布--贝叶斯化的剖面似然--的特性。我们研究了是最大化(用于剖析)更合适,还是积分(用于边际化)更合适。为了报告结果,我们推荐使用边际后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On marginals and profiled posteriors for cosmological parameter estimation
With several examples and in an analysis of the Pantheon+ supernova sample we discuss the properties of the marginal posterior distribution versus the profiled posterior distribution -- the profile likelihood in a Bayesian disguise. We investigate whether maximisation, as used for the profiling, or integration, as used for the marginalisation, is more appropriate. To report results we recommend the marginal posterior distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1